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Abstract
Purpose – The production of glycerol derivatives by the esterification process is subject to many constraints
related to the yield of the production target and the lack of process efficiency. An accurate monitoring and
controlling of the process can improve production yield and efficiency. The purpose of this paper is to propose
a real-time optimization (RTO) using gradient adaptive selection and classification from infrared sensor
measurement to cover various disturbances and uncertainties in the reactor.
Design/methodology/approach – The integration of the esterification process optimization using
self-optimization (SO) was developed with classification process was combined with necessary condition
optimum (NCO) as gradient adaptive selection, supported with laboratory scaled medium wavelength
infrared (mid-IR) sensors, and measured the proposed optimization system indicator in the batch process.
Business Process Modeling and Notation (BPMN 2.0) was built to describe the tasks of SO workflow in
collaboration with NCO as an abstraction for the conceptual phase. Next, Stateflow modeling was deployed to
simulate the three states of gradient-based adaptive control combined with support vector machine (SVM)
classification and Arduino microcontroller for implementation.
Findings – This new method shows that the real-time optimization responsiveness of control increased
product yield up to 13 percent, lower error measurement with percentage error 1.11 percent, reduced the
process duration up to 22 minutes, with an effective range of stirrer rotation set between 300 and 400 rpm and
final temperature between 200 and 210°C which was more efficient, as it consumed less energy.
Research limitations/implications – In this research the authors just have an experiment for the
esterification process using glycerol, but as a development concept of RTO, it would be possible to apply for
another chemical reaction or system.
Practical implications – This research introduces new development of an RTO approach to optimal
control and as such marks the starting point for more research of its properties. As the methodology is
generic, it can be applied to different optimization problems for a batch system in chemical industries.
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Originality/value – The paper presented is original as it presents the first application of adaptive selection
based on the gradient value of mid-IR sensor data, applied to the real-time determining control state by
classification with the SVM algorithm for esterification process control to increase the efficiency.
Keywords Gradient technique, Infrared sensor, Real-time optimization, Simulation and modelling,
Support vector machine
Paper type Research paper

1. Introduction
Esterification products such as monoglyceride and diglyceride represent high needs as
modifying agents and show steadily incremental demand for industrial consumption in the
future, as they have various industrial applications. These products as a raw material are
required in pharmaceutical, cosmetics and personal care industries, as well as ink
manufacturing (Pagliaro and Rossi, 2008; Fernandez et al., 2004; Mostafa et al., 2013;
Alstad et al., 2009). Another use of a derivative product of glycerol in Indonesia, particularly in
oil mining, is for mixing substances to produce oil-based mud and water-based mud.
Production of monoglyceride from esterification of glycerol and synthesis of middle- or long-
chain fatty acids offers promising industrial opportunities (Hui, 1996). To optimize the
esterification reaction, it is essential for the process performed in real-time mode to cover
various disturbances and uncertainties that occur all at the time of the process.
In esterification, as previously researched (Srinivasan et al., 2003), “there is influence of
process variables as temperature and time requirement affected their efficiency in
esterification.” A previous research by van Ast et al. (2008/2009) showed that the
continuous model of the system to be controlled was transformed to a stochastic discrete
automation after a variation was applied to derive the control policy. We use this model to
accommodate the control process of esterification. The esterification process has several
constraints such as the inconstant yield of the production target and the lack of efficiency for
it has a synthesizing reaction that needs high-energy use in the reactor to achieve desired
temperature and time for the process. Traditionally, this type of process was operated based
on the experience of the operator.

Real-time optimization (RTO) was used to indicate the continuous re-evaluation of
selecting variables in operation (Chachuat et al., 2009) as a part of this research and in the
next development of RTO for the chemical process based on Necessary Condition
Optimum (NCO) (Srinivasan and Bonvin, 2007). With recent advances in digital hardware
and optimization software, the RTO method can be connected to a computer control
system (Bocker et al., 2006). In recent years, spectroscopic methods by using infrared have
gained popularity to be chosen in real-time industrial process control, especially for the
esterification process (Blanco et al., 2004). A systematic and rational approach was
required in order to accommodate different sources of sensors and process fluctuations as
dynamic conditions such as disturbance of a process parameter that can affect monitoring
and classification performance from uncertainty of class imbalance and noisy attributes
(Yusta, 2009). It is necessary to adjust the set point of basic control precisely to adapt the
system requirements.

As previous research, that the decision for model parameter adaptation is to select the
parameters to be adapted (Chachuat et al., 2009). Feature selection is generally used in
machine learning when the learning task involves high-dimensional and noisy attribute
data sets as a parameter, as observed in real-time sensor application. In this work,
feature selection with gradient measurement as parameter adaptation was applied to select
the type of appropriate sensor as a parameter related for measurement in this esterification
process. These higher dimensional results increased the accuracy in monitoring the
measurement, especially for the measurement of yield. Furthermore, our algorithm is very
straightforward to apply as all of the parameters have been deployed with sensor operation.
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In the current work, we set the combination of RTO in adaptive optimization approaches
named gradient adaptation with sensor selection, combined with computational methods for
classification. Thus, the objective of this research is to analyze and design the dynamic
process condition of glycerol esterification in detail, in which Business Process Model and
Notation version 2.0 was used and then supported with computational methods such as
gradient measurement for the selection of sensors, and a classification task with a support
vector machine (SVM) consecutively was set to determine the state condition in controlling
and applying microcontroller simulation in Stateflow. As applied for the esterification
process, the investigated system consisted of several performance indicators that have to be
fulfilled such as yield, process time, stirring speed and temperature.

2. RTO
The RTO concept was developed based on self-optimization (SO), which is defined in
Skogestad as how to find an acceptable loss with constant set point values for the controlled
variables (CVs) without the need to re-optimize when disturbances occur. This method has
to be combined with the NCO method (Srinivasan et al., 2008). However, according to the
research by Ye et al. (2012), it is necessary to measure all the NCO components in real time.
RTO improves process performance iteratively by selecting optimization variables using
measurement data. For this research, we claim that this new optimization combined method,
supported with measurement by an adaptive selection sensor and real-time data acquisition
system, is useful for chemical industry application that has a dynamic condition such as the
esterification process. In sensor deployments, each sensor collected data at regular time
intervals, captured a time series representing that the dynamic condition occurs and build
the database that needs the classification approach (Alstad et al., 2009).

Figure 1 shows the schematic diagram of the integration method of SO and NCO to set in
the real-time control process. The concept of SO is a strategic aim to appropriately select the
CVs so when they are maintained at constant set points, the overall plant operation is
optimal or near optimal despite various disturbances (François et al., 2005); this concept was
related to an offline system. To develop a real-time system and improve the performance,
the concept of SO was combined with NCO that was related to the CVs for controlling the
variable (Halvorsen et al., 2003). In this research, the developed active control variable
was obtained in real time with the measurement from the IR sensor with adaptive selection
and was computed for tracking the NCO to select the state with computational methods

REAL TIME OPTIMIZATION
WITH SENSORS-ONLINE

(2016)

SELF OPTIMIZATION-OFFLINE
(1999) FOCUS ON

CONTROL
STRUCTURES

(1999-2000)

INTEGRATION
(2014)

NCO
TRACKING

(2004)

IR SENSOR
MEASUREMENT

(2004)

INTEGRATION
(2012)

GRADIENT
CONTROL

(2005)

CONTROLLED
VARIABLE

(2003)

NULL SPACE
(2012)

ACTIVE
SET

(2012)

MEASUREMENT
COMBINATION

(2008)

MIQP
(2010)

Figure 1.
Relationship between
SO and NCO in RTO
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for classification. The real-time task had integral action to track the selected sensor using
the adaptive method and to set the control at a necessary set point with state. The set point
was determined as considered to be the best performance condition of apparatuses such as
heater and agitation motor.

3. Implementation of the RTO method with gradient and state control to
optimize process time
In industrial production, the run-time process variations need to be accounted for, especially
in the industrial process with a chemical reaction, typically to cope with these uncertainties
by adopting a conservative strategy that guarantees constraint satisfaction even in the
worst-case situation. This measurement can be used in an optimization framework to
compensate for the effects of uncertainty in the form of model mismatch or process
disturbances. Nowadays, real-time optimization with necessary conditions of optimality
(NCO) proposed by Jäschke and Skogestad (2011) and optimal operation is achieved by
designing a “smart” control structure. As the comparison of the SOC method was combined
with NCO tracking (Srinivasan et al., 2003) or zone control MPC (Graciano et al., 2015), this
concept became real-time optimization using an online model in data acquisition. Among the
various options for input adaptation, there is a promising approach consisting of directly
enforcing the NCO that includes two parts, the active constraints and the sensitivities.
In NCO, there is a two-level approach that does not require us to repeat the optimization: at
the upper level, the constraints that are active in the optimal solution are identified from
optimization of a nominal process model. At the lower level, feedback control is used to
enforce the NCO to define the control problem in matched criteria as described in Figure 2.
The use of measurements to compensate for the effect of uncertainty has recently gained
attention in the context of RTO of dynamic systems.

Based on the control problem in the case study of this research, the consideration of the
esterification process as a reaction system of synthesized from glycerol with oleic acid was
taken in the laboratory scale model:

AþB-CþD (1)

where A is the glycerol; B the oleic acid; C the glycerol monooleate; and D the water.
This reaction was related to the temperature reaction process that corresponded to k1 as the
kinetic parameter. The reaction rate was defined as:

�rA ¼ k1CACB�k1CCCD (2)

where CA, CB, CC and CD present the concentrations of oleic acid, glycerol, glycerol
monooleate and water, respectively.

The commonly used approach consists of updating a process model and performing
numerical optimization. In this research, because of the dynamic condition of the esterification
process and slow control response, especially the control of temperature, we refined the model
using IR sensors supported with the computational method as classification and implemented
the new optimization model as shown in the flow diagram in Figure 3.

NECESSARY
CONDITION
OPTIMUM

(NCO)

CONTROL
PROBLEM

DYNAMIC STATIC

OPTIMIZATION
PROBLEM

Figure 2.
Connection of NCO
between problems
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As per Chachuat et al. (2009) the model of optimization was based on the formulation:

kn1
� � ¼ argmin

y

X
iEfCg

1� ci tf ; y
�

cp;i tf
� �

 !2

p¼pk

8<
:

9=
; (3)

with kn1 the adjustable parameters which correspond to the kinetic coefficients such
as the temperature of the reactor θ¼ (k1). At the end of the kth RTO operation that was
determined by the sensor, those values were updated by minimizing a weighted sum of
square error, while cp, i (tf) is the concentration of product i at the end of the batch, measured
using gas chromatography-mass spectrometry (GCMS) and Fourier transform infrared
spectroscopy (FTIR):

k1; kð Þ ¼ 1�kyð Þ k1;k�1
� �þky kn1

� �
(4)

The value of parameter θt is estimated using process output measurement ys with
adaptation parameter κθ¼ 0.5.

We tried to develop the optimization system from previous research (Soenandi et al., 2015).
In this research, to select the appropriate sensor for data processing in the real-time condition
within three wavelengths IR sensors, we have developed a real-time simulation model of
the selection parameter in previous research in simulation (Soenandi and Djatna, 2014),
and to make better optimization for esterification control in this research was operated in
with formulation:

yt ¼ Dv ysð Þ (5)

where Dv is the gradient measurement from sensor data measurement.
Previous research by Mahassni (2013) shared the similar idea as a comparison to

research which also used sensor selection regarding the operating environment. To simplify
the selection method, we tried gradient measurement to select the appropriate sensors used
for regression. As mathematical formulation, the gradient of f is defined as the unique vector
field whose dot product with any vector v at each point x is the directional derivative of f
along v (Korn and Theresa, 2000), as:

rf xð Þð ÞUv ¼ Dvf xð Þ (6)

In this research, we measured the gradient by comparing sample data points from the
two-dimensional field as identified by the sensors. The formulation can be seen in Equation (7),
and by limiting the gradient value mi we set the decision to use the data or pass it:

mi ¼
tn�tn�1

xn�xn�1
(7)

where tn is the time interval sampling and xn is the value from the sensor.

Model-based
Optimization
(SVM) (9-13)

Run Delay
t–1�t

Reactor

Model parameter
Adaptation

(Gradient) (5-7)

Sensor
�t–1

�t

�t

ys (�t)
Figure 3.
Real-time optimization
with model parameter
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We assumed that we have a plant measurement model from the sensor:

Y ¼ f y u;xn ;D tð Þð Þ (8)

The optimization algorithm uses the process model and the objective function to solve for
the new optimum state for the process used the SVM for classification. SVM regression was
performs linear regression in the high-dimensional feature space using ε-insensitive loss
and, at the same time, the feature space f (x,ω) in this research we got Y value as plant
measurement from sensor as f y is the function mapping the variables u, xn and D(t) onto the
measurement space, tries to reduce model complexity by minimizing :o2:. This can
be described by introducing (non-negative) slack variables ξ1, ξ*, i¼ 1,…, n, to measure
the deviation of training data. Thus, SVM is formulated as minimization of the
following function:

minimize
1
2
:o2:þC

Xn
i¼1

x1þxni
� �

(9)

subject to:

yi � f xi;oð Þ� bpeþxni (10)

f xi;oð Þþb� yipeþxni (11)

xi; x
n

i ; X0 (12)

with C the positive constant (regular parameter) being a user-specified misclassification
penalty and xi was from sensors used. This formulation can be transformed into the dual
problem given as:

f xð Þ ¼
Xn
i¼1

ai � ani
� �

Kðxi; xÞþb (13)

where the dual variables are subject to constraints 0pai; ani pC . The sample points of
data that have nonzero coefficients in Equation (12) are called support vectors.

Afterward, in the general optimization, the optimal operation can be formulated as
minimizing a process time function T:

min
u;x T u;X ; dð Þ s:t:

h u;xn ;D tð Þð Þ
g u;xn ;D tð Þð Þ

( )
(14)

where u is the degree of freedom; xn the sensor output; D(t) the disturbance as time
function; and T the process time.

As previously investigated by Datskov et al. (2006), the optimal operating point can be
found by solving Equation (14) that must be realized through a control system.
To implement the control system, from the optimal operating point, vector must be specified
and the identification process stage classified with the SVM algorithm (Soenandi et al., 2015).
This method can also be used as a general framework for constrained multivariable
optimization problems under insufficient system information (Wong et al., 2008)
that is suitable in the chemical reaction process, and for the previous research we
developed an adaptive control method for the optimization of an esterification reaction
(Soenandi et al., 2015).

135

RTO using
gradient
adaptive
selection

D
ow

nl
oa

de
d 

by
 D

oc
to

r 
Iw

an
 A

an
g 

So
en

an
di

 A
t 0

8:
44

 1
3 

Ju
ne

 2
01

7 
(P

T
)



In order to implement the formulation in the esterification process, we used a
commercial infrared LED source as made from original growth of narrow gap
semiconductor alloys onto the n+-InAs substrate, optical coupling through the use of
chalcogenide glasses and Si lenses with antireflection coating. Three types mid-IR sensors
of 3.4 µm LED-34SR full thread body, 5.5 µm LED-55SR full thread body and 7 µm OPLED
70 full thread body are shown in Figure 4, with the specification in Tables I-III; also the
thermopile detectors from Heimann HTIA Dx-Tx and thermocouple as temperature
sensors were installed in the reactor.

Several reaction and variation conditions were tested in Surfactant and Bioenergy
Research Center Bogor Agricultural University.

In order to test various conditions of the temperature and reaction time, the temperature
and reaction time was varied between 200 and 230°C and 100-120 minutes using a laboratory
scale reactor with apparatuses such as a four-neck round-bottom flask, condensation tube,
and Arduino with sensors that interfaced to a computer as set up in Figure 5.

In the validation phase, to measure the performance of the new system, the RTO system
was built as shown in Figure 6. Stable operation is generally assumed for modeling and
validation in RTO. Real-time sensing and data acquisition was examined first to ensure that
this assumption is not violated and streams well to the database. For RTO of the
esterification process, real-time data and laboratory data were integrated and merged first,
both in a steady-state manner. In measuring the performance, yield is one of the most
important indexes for the esterification process and calculated for operation evaluations in
each batch basis.

Figure 4.
LED MID-IR source
and detector

Peak wavelength µm 3.4± 0.05
Pulse power mW 0.25÷ 0.35
CW voltage V Drive current 0.2 A 0.26÷ 0.29

Table I.
Specification of
LED34Sr

Peak wavelength µm 5.4÷ 5.5
Pulse power µW 5÷ 7
CW voltage V Drive current 0.2 A 1.5÷ 2.5

Table II.
Specification of
LED55Sr

Peak wavelength µm 6.5÷ 7.0
Pulse power µW 5÷ 7
CW voltage V Drive current 0.2 A 1.5÷ 2.5

Table III.
Specification of
OPLED70
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4. Experimental results
For the first step, Business Process Modeling and Notation (BPMN) 2.0 (SAP, 2013) was
used to analyze and design the system modeling for the esterification process by abstraction
for conceptual design to describe the section of SO and NCO in detail; the diagram
in Figure 7 describes the details of each task of digital apparatus and the communication
between them, which will be the base structure for programming in Arduino to run the
implementation step, such as data acquisition and controlling in the esterification process.

For the characterization tests, this study carried out several characterization tests for
calibrating the signal from sensors, both for the identification and validation of the process
results, such as FTIR and GCMS. The information (transmittance level) from the FTIR test
would be used for selecting the wavelength. The selected wavelengths regarding the
difference of transmittance level between before, during the process and after esterification
were 3.4 µm, 5.5 µm and 7 µm, respectively. To confirm this selected wavelength a GCMS
test was carried out to ascertain the level (yield) of glycerol that resulted from the end of
esterification as the production target during the process span. Figures 8 and 9 display the
spectrum from FTIR and GCMS generated by Sigmaplot 13.0, respectively (Systat, 2014).

The test of GCMS in a sample which has variance in temperature and process time, compared
with the database of WILLEY09TH.L, it was detected as the reference number 587,486 with

REACTOR

SENSOR

COMPUTER

ARDUINO

Figure 5.
Parts of apparatus

experiment in
laboratory

MAGNETIC STIRRER AND HEATER

ARDUINO 
IR SENSOR

TEMPERATURE
STIRRER SPEED

CONTROL

REAL TIME SENSING

REAL TIME OPTIMIZATION

REAL TIME DATA ACQUISITION

Excel with Macro
+

PLX DAQ

USB

Figure 6.
Validation of

esterification process
diagram
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molecular weight¼ 356. The yield obtained at 200°C for the 100-minute process using raw
material purity is 90 percent, which is the highest obtainable yield compared to another condition.

This model assisted in predicting and simulating the behavior of control with state,
especially to control the heater to set the temperature in a reactor, using Stateflow from

Set Temperature

Set Stiner 

Process
Esterification

Continue
Esterification

Checking Process

Checking
Completion

End Esterification

Identification Status Esterification

Start Identification
SVM Classification

Determine Status

+

End Identification

Optimization Control Process

Determine Gradient

Start Optimization

SELF-OPTIMIZATION

End Optimization

Select Parameter
+

NECESSARY CONDITION OPTIMUM

Figure 7.
BPMN diagram for
SO and NCO

3.4�m 5.5�m 7�m 
Wavelength 

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0 1,000 2,000 3,000 4,000 5,000

Before Esterification After Esterification

Wavenumber (1/cm)

Tr
an

sm
itt

an
ce

 (
%

)

Figure 8.
Spectrum FTIR before
and after esterification
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MathWorks (2014). In this stage, we wanted to simulate a control logic tool used for
modeling reactive systems via state machines and flow charts within a Simulink model with
specific applications in mode logic, where each discrete mode of a system represented by a
state was deployed as a control model in Stateflow (Figure 10).

In this research real-time data acquisition was developed. Data acquisition which is
processing of sampling signals that measure real-world physical conditions (usually using a
sensor) and converting the result into digital numeric values that can be manipulated by a
computer. In this research, real-time data acquisition was operated in Arduino Mega 2560,
connected via USB 2.0. The database was built in a personal computer with the specification of
Core i5 2.2 GHz CPU, 4GB RAM, using Microsoft Excel with the add-in program
named Parallax-Data Acquisition (PLX-DAQ), to collect the data from the sensor model listed
in Table IV. Then, the task of selecting the sensor and the adaptive control was sequentially run
in. The task of data acquisition from the sensors was collected in the one-second interval during
130 minutes in each batch process as implemented the formulation for optimization. Hence, the
total data collected in the database was approximately 7,200-item data for each sensor while
sensors were selected by using a gradient value minimum of 1.6 in 10 seconds’ interval.

After the sensor selection step, we developed regression analysis to measure the
relationships between variables. In this research, the regression was variables of sensor
measurement to measure the yield of the esterification reaction, as the result in Table V.

We illustrate in Figure 11 a real-time data plot from data acquisition using three mid-IR
sensors within 7,200-second time length; the value is digital bit number output related for
the transmittance level in the esterification process for each wavelength by tracking of data.
We implemented the classification on an Arduino microcontroller and compared the yield
measurement using the regression method.

MonoOleate

Time (minutes)

7e+7

6e+7

5e+7

4e+7

3e+7

2e+7

1e+7

0
0 10 20 30 40

A
bu

nd
an

ce

Figure 9.
GCMS Spectrum for
product testing with

setting variable 200°C
and 100 minutes

State

Heating_up
entry: Heater=300
Stirrer=300

Stirrer=200

Stirrer=100(Rate>10)

(Rate>20)

(Rate�10)
(Rate�20)

Stabilize
entry: Heater=200 Finished

entry: Heater=1002
1

Figure 10.
Stateflow model of

esterification control

Symbol Description Availability Sampling period Number of samples

x1 The temperature of the reactor Real-time 1 s 7,200
x2 The composition of the target yield Real-time 1 s 7,200
x3 The speed of agitation Real-time 1 s 7,200

Table IV.
List of sensor model
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The measurement of yield from regression was resulted by collected data input from
sensors. We compared it by setting in a non-adaptive and adaptive mode using two samples
of purity. To find the different yield measurement from each mode, as for validation, there
was a slight difference in yield measurement between adaptive and non-adaptive methods
as shown in the plot diagram in Figure 12.

For validation purpose, it is necessary to indicate related information of adaptive selection
sensors’ performance using gradient with the regression to measure the yield measurement
between non-adaptive and adaptive sensor selection using two samples of raw material as in
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Figure 11.
Real time data
sensor plot

Sensor selection
State 3.4 µm (X )1 5.4 µm(X )2 7 µm(X )3 Regression

1 ON ON ON Y¼−33.62390+ 1.04874(X )1+ 0.8362(X )2− 0.29288(X )3
2 OFF ON ON Y¼ 59.85565− 0.04523(X )2+ 0.062339(X )3
3 ON ON OFF Y¼ 26.77324+ 0.039855(X )1+ 0.709494(X )2

Table V.
Yield regression for
adaptive sensor
selected in each state

Non Adpative Sensor Non Adpative Sensor Track
Adpative Sensor TrackAdpative Sensor
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Figure 12.
Comparison of yield
measurement from
sensors
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Table VI, showing that using the adaptive method leads to the lowest percentage error. From
our model, the output example of SVM in state control is listed partially in Table VII.

The comparison of temperature in the reactor is as shown in Figure 13. From this data
acquisition plot of temperature, we can compare the optimization with parameter adaptation
operated with a maximum temperature at 250°C, to RTO with classification and gradient
which was operated with a maximum temperature at 200-210°C, showing that RTO was
more efficient as it consumed less energy. Finally, optimization indicators in real time
compared with non-controlled methods as operated manually by the experience of the
operator and by using RTO methods are summarized in Table VIII.

Yield (%)

Sample
Model parameter

adaptation Non-adaptive sensor Adaptive sensor
GCMS
test

80% purity glycerol 75 79 80
Processed in 210°C and 105 minutes 70 Percentage error 6.25% Percentage error 1.25%
90% purity glycerol 85 89 90
processed in 200°C and 100 minutes 85 Percentage error 5.55% Percentage error 1.11%

Table VI.
Comparison yields

from model parameter
adaptation,

non-adaptive and
adaptive methods

Selecting sensor Variable controlled
Sampling time (min) Sensor 1 (value) Sensor 2 (value) Sensor 3 (value) State of temperature State of agitation

0 On (10) On (15) On (16) 1 1
45 On (20) Off On (40) 1 2
60 On (27) Off On (46) 2 2
90 Off On (60) On (64) 2 3
120 Off On (73) On (78) 3 3

Table VII.
Example output for
SVM in state control
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0
0 2,000 4,000 6,000 8,000
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RTO with Classification and Gradient
Parameter Adaptation
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Figure 13.
Temperature

difference in reactor
using RTO and

parameter adaptation
method

Comparison

Indicators
Existing

(non-controlled) Parameter adaptation
RTO with raw
material 80%

RTO with raw
material 90%

Process time (minutes) 120 120 105 100
%Yield 76 79 79 89
Agitation speed (RPM) 200-500 200-500 300-400 300-400
Max temperature (°C) 250 240 210 200
Avg. temperature (°C) 192 195 175 172

Table VIII.
Comparison of
optimization

indicators
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5. Conclusion
This research presents a new RTO system using adaptive selection and classification from
infrared sensor measurement for esterification oleic acid with glycerol. As a result of this
research, we have presented an abstraction for a conceptual model of the optimization of
glycerol esterification in real time with BPMN 2.0 to ensure the implementation of RTO.
Adaptive selection sensors’ works using a gradient value minimum at 1.6 with a 10-second
time interval, followed by SVM and state control with three states, had achieved a good
performance. For system validation, an RTO using gradient adaptive selection and
classification from the sensor measurement approach to optimize the esterification process
shows that the responsiveness of control increased product yield up to 13 percent and
reduced the required process duration up to 22 minutes, with an effective range of stirrer
rotation set between 300 and 400 rpm and final temperature between 200 and 210°C which
was more efficient as consuming less energy. For future research, we still need the
development of a high-temperature resistance sensor for the reactor and implementation of
RTO for the continuous system of production.
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