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bstract

Hematox ylin and eosin (H&E) stain 1s one of the most common specimen staining methods in pathology diagnosis due to
the capability to show the morphological structure of tissue. However, the appearance of the specific component, i.e., elastic
fibers might not be recognized easily because have similar color and pattern with ones of collagen fibers. To distinguish these
two components, Verhoeff’s Van Gieson (EVG) staining method is commonly used. Nevertheless, procedures of EVG stain
are more complex and expensive than H&E stain. In this study, we investigate the possibility to distinguish elastic and col-
lagen fibers from H&E stained images by applying spectral image analysis based on hyperspectral images. With experiments,
we measure the transmittance spectral of 61-band H&E stained hyperspectral image, which are converted into absorbance
spectral of hematoxylin, eosin, and red blood cell. As many as 3000 sampling pixels both from RGB and hyperspectral images
of HE stained specimens were trained using Linear Discriminant Analysis (LDA) to get a discriminant function to classify
elastic and collagen components in H&E RGB and H&E hyperspectral images. We conducted verification based on leave-
one-out cross-validation of six data sets for evaluation. The verification result both visually and quantitatively compared to
EVG stained image shows that the usage of hyperspectral images performs better than RGB images.

Keywords Pathology - Hyperspectral image - Discriminant analysis - Classification

1 Introduction

In recent clinical practice, image-based diagnostic technolo-
gies become increasingly important. Accordingly, there is a
demand for improvement of techniques for analyzing com-

plex biological tissues. Despite recently radiological imag-
ing systems are progressively developed, the evaluation of
tissues by biopsy and clinical pathology examination
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remains the gold standard for definite diagnosis.

In pathology diagnosis, specimen staining is an impor-
tant process, in which the color information obtained by
lissncomponems 1s useful for further pathological analy-
sis. Hematoxylin and eosin (H&E) stain, which is one of
the most common staining methods, is conducted in almost
all pathological diagnosis to observe the morphological
structures of tissues. In H&E stained images, fibers and
cytoplasm are stained pink and nuclei are stained blue.
On the other hand, previous studies about pathological
analysis showed obvious correlation between the abnor-
mality of elastic fibers and diseases [1]. Specifically, it is
well known that pancreatic cancer tissues have a specific
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density and distribution of elastic fibers in the walls of ves-
sels and ducts associated with the tumor phenomenon in
pancreatic ductal carcinoma [2]. However, the aearance
of elastic fibers is not easfllo be recognized from H&E
stained images, due to the similar color and pattern with
collagen fibers. To distinguish these two components, Ver-
hoeff’s Van Gieson (EVG) stained images are commonly
used because EVG stain is able to dye elastic and collagen
fibers different colors, deep blue and orchid, respectively.
Nevertheless, procedures of EVG stain are more compli-
cated and less cost-efficient than H&E stain.

Meanwhile, hyperspectral imaging techniques have
been studied for a long time in various applications such
as remote sensing [3], and recently it has been extended to
the pathology field [4]. Using hyperspectral microscopic
cameras, tissue specimens can be analyzed in more nar-
row and various wavelength bands than using general
RGB cameras. Due to this technique, we can obtain valu-
able and comprehensive information regarding the object
characteristic on biomedical tissues [4-7]. If this tech-
nique is employed to analyze H&E stained images, elastic
and collagen fibers may be able to be classified without
EVG stained images. This means that we can reduce the
time consumption and cost. Therefore, we investigate
the possibility to distinguish elastic and collagen fibers
without EVG stained specimens but with H&E stained
ones by applying spectral image analysis based on hyper-
spectral images. As a target to confirm the efficiency of

Pathological tissues
of pancreas

H&E staining !

hyperspectral image analysis, we examine pancreas tissue
samples.

2 Material and method

Procedures in this study consist of several steps, i.e., image
acquisition, preprocessing, training, dimensional reduction,
classification, and verification. More detailed procedures can
be seen in the block diagram shown in Fig. 1.

2.1 Image acquisition
2.1.1 Tissue samples

Motivated by previous research that the specific appearance
of elastic fibers is a tumor-associated phenomenon in pan-
creatic ductal carcinoma [2], hence human pancreas in H&E
stained and EVG stained Ijssteipecimens from BioMax Inc.
are used in this experiment. All tissues are collected under
the highest ethical standards with the donor being informed
completely and with their consent.

We used six pairs of tissue sample images, each pair
consists of an H&E stained specimen and an EVG stained
one, which have almost exactly same biological structures.
That is because these EVG stained specimens are obtained
by dying unstained specimens that are obtained by bleach-
ing the H&E stained specimens. H&E stained specimens as

EVG stained

bleaching EVG'stain
[ HEE stained tissues ] Un.s tained o
tissues
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]
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Fig.1 Block diagram of procedures
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shown in Fig. 2a are captured with a hyperspectral camera
thatis attached to a microscope. In this case, we select smaller
region of interest (ROI)s manually flﬂ] the sample tissue as
shown in Fig. 2c. They are used for classification of elastic
and collagen fibers. EVG stained images are captured with a
whole slide image (WSI) scanner by Hamamatsu photonics
K.K. They are used for evaluation of the experiment, i.e., the
classification results from the EVG stained images help us to
find groundtruth.

2.1.2 Hyperspectralimaging system

Hyperspectral images are captured with a hyperspectral cam-
era, NH-3 by EBA JAPAN CO., Ltd. It can take 151 band
images from 350 to 1100 nm with 5 nm wavelength resolution
interval. We only used 61 visible wavelengths from 420 to
720 nm. The image size is 752 x480 pixels, and the data length
on each pixel is 10 bits with intensity range 0—4095 (interval
value 4) which is equal to 12 bits. Tissue samples are observed
with an optical microscope, BX-53 by Olympus Corp., with
which the hyperspectral camera and a white LED light source
are attached. The above hyperspectral imaging system is based
on transmission measurement, and hence a calibrated transmit-
tance image #(4) is obtained as following equation [8],

I(A)/E, = 1(A),/Ey
I(i)\\-'/E\\-' - I(’{)hl/Ehl ’

Li(A) =

(H

(a)

(b)

(c)

Fig.2 Pancreas tissues specimen a H&E stained image, b EVG
stained image, ¢ ROI images of hyperspectral image

where J(4), is a black image pixel with LED off, /(1) is a
white image pixel which goes through an empty glass slide
with LED on, /(4), is a captured sample image pixel, E, is
an exposure of the captured sample image I(4),, E,; is an
exposure of the black image I(4),,, and E,; is a total exposure
of the white image I(4),.

To avoid any structural information loss within saturated
regions, we employ a high-dynamic-range rendering tech-
nique, i.e., we take both of high and low exposure images,
and the saturated areas in the high exposure image are replaced
with the values come from the low exposure image.

To make the object of interest in tissue easier to be ana-
lyzed, we calculate the absorbance image intensity using Beer
Lambert Law [8-10] as follows,

Absorbance image (1) = —log,, {t(4)}. (2)

2.2 Linear discriminant analysis (LDA)
The absorbance spectra derived from the hyperspectral images
are explored for any observable phenomena such as pixel clus-
ters of elastic and collagen fibers. For this purpose, we use
linear discriminant analysis (LDA), a multivariate statistical
analysis method for dimensionality reduction and for classifi-
cation based on the largest possible variance. The reason why
we use LDA is because we can directly observe the potential
of the measured data itself to classify elastic and collagen fib-
ers, without dependence on skills and experience as a data
scientist. On the other hand, the performance of sophisticated
classification methods such as deep learning is much more
dependent on skills and experience, although the accuracy
might be better than LDA, i.e., sophisticated methods might
have a negative influence for fair evaluation.

The computation step of LDA as follows [11, 12].

We calculate mean vectors of image intensities in elastic
and collagen fiber regions as follows,

iy Iy
Hy = Z-‘ﬁr‘/”]e Hy = Z-‘fzr‘/"'ze (3)
i=1 i=1

where u; is a mean vector of image intensities in elastic
fibers, u, is a mean vector of image intensities in collagen
fibers, x; is an image intensity of an elastic fiber region
from ith pixel sample, x,; is an image intensity of collagen
fiber regions from ith pixel sample, n; is a number of pixels
in elastic fibers, and n, is a number of pixels in collagen
regions.

Then, we calculate within-class scatter matrix Was follows,

W=n, x Z (0= ) (3 = )’

xy; €Elastic

+n, X Z

Xy € Collagen

()
(-‘fzf — 1) (-‘fzf = Hz)r‘
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Between-class scatter matrix can be defined by sample
covariance of the class mean,

=3

B= ”r’(”r'_”)(”r'_“)r‘ )

i=l

where y is a mean vector of both elastic and collagen fibers.

The jth classification vector V; in this case will be given by,
Bvj = AWv;. (6)

Then, we can obtain the classification vecwr\_*f by calcu-
lating an eigenvector of W' B.

This study uses the first eigenvector of LDA as a linear
discriminant function (LDF) for classification of Elastin and
Collagen. An imm:)mducl between the LDF and a spectrum
on a pixel of an H&E stained hyperspectral image is calcu-
lated as a score for classification.

3 Experiments results
3.1 Training data of H&E stained image

For training data, we picked 3000 pixel samples includ-
ing 1500 elastic and 1500 collagen fibers from 6 H&E
stained tissue samples. The positions of the sampled points
were selected by non-pathologist based on the label from
groundtruth EVG stained images produced by using Abe’s
method which has been revised according to pathologists’
suggestion. The EVG images were exactly aligned and
scale-adjusted with the corresponding H&E-stained images
by employing an image registration technique based on
speeded-up robust features (SURa Hence, we could iden-
tify the correct positions of the elastic and collagen fiber
samples in the H&E-stained images.

Figure 3 shows pixel values of all training data samples in
H&E-stained images. In Fig. 3a, red plots represent collagen
fibers, and blue plots represent elastic fibers in RGB images.
Figure 3b shows the measured intensity values of hyperspec-
tral images as 61 bands. Using lha samples, we conducted
LDA and obtained an LDF for the classification of elastic and
collagen fibers in H&E-stained images. Figure 4a shows the
eigenvalues of the matrix W~'B in Eq. (6). This graph means
that the first classification vector generated by LDA makes a
much larger contribution to the classification performance than
others. That is why we use only the first classification vector
as LDF. Figure 4b shows the LDF for hyperspectral image and
also the LDF for RGB image is obtained as following vector,

~0.6428
06538 |, 7
03991

LDFggp =

@ Springer

[« I
O Colagen

09
08
-
Qo
o
08
05
04 2 oo
L o -4
ha - 1
o8 -
M 8 e ' ]
(TN " o
— 04
Blue o o Green
(a)
3
25
3
S
-1
=
E
® 15
5
g
2 1
s
Z
g os
®
E
0
05
400 450 500 550 600 650 700 50
Wavelength (nm)
(b)

Fig. 3 Pixel values of training data samples in H&E stained image. a
RGB image, b hyperspectral image

where each component of this vector shows LDF coefficients
for R, G, and B, respectively.

3.2 Classification result

To classify the regions of elastic and collagen fibers from
H&E stained images, we applied the LDFs as shown in
Fig. 4 and Eq. (7) to H&E stained RGB and hyperspectral
testing images. We conducted additional experiments based
on 6 Leave-one-out cross-validations, which consist of five
image samples for training and the other 1 image sample for
testing and repeat validations for all 6 sets of image samples.
In each cross-validation, 600 pixels which consist of 300
pixels in elastic fiber regions and 300 pixels in collagen ones
were taken from each image sample.
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Fig.4 Ea'lple result of LDA for training dataset a Eigen values, b
LDF for classification of elastic and collagen fibers in hyperspectral
images

As a ml:éroccssing, we extracted only fiber regions
from the stained images. The procedures of this pre-
processing was as follows;

1. Fiber regions of EVG stained images are extracted by
employing Abe’s method for EVG image [13]. The
extracted regions have been verified by pathologists
from Saitama Medical University, and the collagen and
elastic fiber regions as groundtruth images have been
revised accordi n pathologists’ suggestion.

2. Fiber regions of H&E stained images are extracted by
tracing the extracted region of the EVG staine(m:igcs,
which are exactly aligned and scale-adjusted with the
corresponding H&E stained images by employing the
SURF-based image registration.

-05 Q as 1 15 2 25 3 35 4 45
Discriminant 1 score

(b)

Fig. 5 Distributions of LDF data projections a RGB image. b hyper-
spectral image

The reason why we did this procedure is that this study
did not consider the classiﬁcatioaf all pathology elements
but only focused on the potential classification of elastic and
collagen fibers in H&E stained specimens based on spectral
information only.

For evaluation, we examined distributions of LDF
data projections using test samples. We calculated data
projections between the LDFs and pixel values of fiber
regions in the test samples and used the data projections
as scores for classification. Figure 5a, b show histograms
of the data projection for RGB and hyperspectria mages,
respectively. We can see that the distributions of elastic
and collagen fibers in the hyperspectral images are sepa-
rated more significantly than the RGB images. In addition,
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we calculated decision lines for optimal classification,
which are represented as red lines in Fig. 5. The deci-
sion lines are expected to reach the condition where the
error rate of the classification is minimum and equal for
two classes [14-16]. When the score is larger than the
decision line, its sample pixel is decided as elastic fiber,
while it is decided as collagen fiber in the opposite case.
Figure 6 shows six pairs of H&E and EVG image samples
for cross-validation, and Fig. 7 shows resultant images of
classification from one cross-validation. Figure 7a—e show
extracted fiber regions of an H&E-stained image, a classi-
fication resultant image from an RGB H&E stained image,
a classification resultant image from a hyperspectral H&E
image, extracted fiber regions of an EVG stained image,
and a groundtruth image produced from an EVG image,
respectively.

In Fig. 7b, c, e, red color pixels on these images indicate
the appearance of collagen fiber, and blue color pixels also
indicate elastic fibers, and white squares in each image show
the characteristic regions, in which a large square exhibits
zoomed part of a small square area. Figure 8 also shows
resultant images for all six cross-validations. Figure 8a—c
show groundtruth images, resultant images from hyper-
spectral H&E images, and resultant images from RGB H&E
images, respectively. From these resultant images, we can
see that the resultant images of elastic and collagen fiber
classification using hyperspectral images shaped more simi-
lar pattern to the groundtruth image than using RGB images.

Beside visual verification, we also calculated the sensitiv-
ity and specificity, which are quantitative evaluation indexes
for classification. They are defined as following equations
[171,

Fig.6 Image samples, a—¢, g—i H&E stained and d—{f, j-1 EVG stained image
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(e)

Fig.7 Resultant images of one cross-validation, a fiber region of
HE-stained image, b classification resultant image from H&E-RGB
image, ¢ classification resultant image from H&E-hyperspectral

True positive

Sensitivity = T — — —, (8)
rue positive + False negative

L True negative
Specificity = - — — (9)
True negative + False positive

where true positive and false negative mean the number of
pixels where an elastic fiber pixel is decided as elastic @dter
correctly and collagen fiber incorrectly, respectively. True

image, d fiber region of EVG stained image, e classification resultant
image from EVG image, which is groundtruth of the classification

negative and false negative also mean the number of pixels
where a collagen fiber pixel is decided as collagen fiber cor-
rectly and elastic fiber incorrectly, respectively.

With these indexes, we obtained the receiver of curve
(ROC) plot of elastic and collagen from each testing image
as seen in Fig. 9. These ROC curves were drawn by shifting
the decision line for the classification of data projection from
minimum to maximum of the score.
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Fig.8 Resultant image of six cross validations a Groundtruths images, b resultant images from hyperspectral H&E images, ¢ resultant images

from RGB H&E images
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Table1 AUC from six cross validations

Cross validation Hyperspectral RGB

1 0.8421 0.8207
2 0.7057 0.6533
3 0.8069 0.7875
4 0.7499 0.7252
5 0.8498 0.8146
(4] 0.6374 0.6185
Average 0.7653 0.7366
Std.dev. 0.0763 0.0783

To evaluate the accuracy of the classification from the
ROC curves, we calculated the area under curve (AUC) as
following equation [18],

1
AUC = [ ROC(r)ds. (10)
0

The results of AUC are shown in Table 1. This result
shows that classification on hyperspectral images performs
better than RGB in all samples.

4 Discussion

These observations show that the potential performance of
classification based on hyperspectral imaging is superior to
classification based on RGB imaging from several points of
view. Hyperspectral imaging systems are less cost-efficient
compared to RGB camera systems in general. However,
a simpler imaging system equivalent to the classification
potential based on hyperspectral imaging systems can be
realized with a wavelength filter that has a shape of the LDF
shown in Fig. 4b.

Meanwhile, this study investigated the classification
performance base on only spectral feature information, in
which the classification accuracy of the experiment is not
good enough to employ the proposed classification method
in practical diagnoses. However, the combination of not only
spectral but also spatial information can surely improve the
classification accuracy. This means that a classification
method with sufficient accuracy for practical diagnoses can
be realized.

5 Conclusion
This study observed elastic and collagen fibers classifica-

tion from the H&E-stained image through hyperspectral
transmittance using discriminant analysis. The evaluation

@ Springer

was done by visual and quantitative verification compared
to the classification result of EVG stained image [13], which
has been verified by pathologists. The result shows that the
hyperspectral result performs better than RGB. It shows the
potential method to substitute the usage of EVG staining
method to recognize the appearance of elastic fibers.
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