Please use this identifier to cite or link to this item: http://repository.ukrida.ac.id//handle/123456789/124
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTandipuang, Frahselia-
dc.contributor.authorHayat, Cynthia-
dc.contributor.authorSagala, Noviyanti-
dc.date.accessioned2020-03-16T08:21:06Z-
dc.date.available2020-03-16T08:21:06Z-
dc.date.issued2020-01-
dc.identifier.issnE-ISSN : 2338-0403 ; P-ISSN : 2620-4002-
dc.identifier.urihttp://repository.ukrida.ac.id//handle/123456789/124-
dc.description.abstractn/aen_US
dc.language.isoiden_US
dc.publisherDepartment of Computer Engineering, Universitas Diponegoroen_US
dc.relation.ispartofseries8;1-
dc.subjectdeficiency early diagnoseen_US
dc.subjectfat-soluble vitamin deficiencyen_US
dc.titleIdentification of Fat-Soluble Vitamins Deficiency using Artificial Neural Networken_US
dc.typeJournalen_US
Appears in Collections:Form review

Files in This Item:
File Description SizeFormat 
Peer Review Identification of fat soluble.pdf3.15 MBAdobe PDFView/Open


Items in UKRIDA Repository are protected by copyright, with all rights reserved, unless otherwise indicated.