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Abstract—Timely and precise cataract detection is crucial to 

managing the risk and preventing blindness for cataract’s 

patients. This paper proposed a framework for automatic 

cataract detection consisting of the K-Means clustering-based 

segmentation (KMSeg) and Convolutional Neural Network 

(CNN). At first, data pre-processing was performed. Then,  

KMSeg is responsible for characterizing the input images into a 

subgroup of color. Lastly, three CNN were employed based on 

DCNN, ResNet18, and ResNet50 backbones for feature learning 

and classification task. An extensive study was examined on 

Fundus and Front Eye datasets with numerous experimental 

settings. The result shows that the proposed KMSeg-CNN is able 

to maintain accuracy yet provides a faster training and testing 

execution time across the dataset. 

Keywords—image segmentation, K-means, CNN, cataract 

detection 

I. INTRODUCTION  

A cataract is one type of eye disease indicated by clouded lens 
manifestation [1]. This disease could be severe if not treated 
properly, which precedes blindness [2, 3]. There will be 40 million 
people across the globe are projected to suffer from losing their 
vision due to cataracts [4] in 2025. More specifically, 77.7 % of 
blindness in Indonesia was also found by the attack of cataract 
illness, as reported in [5]. In fact, this vision-impaired can be 
prevented if appropriate treatment is practiced at a very early stage 
of cataracts. Reliable cataract detection is indeed an essential issue 
to be provided by an ophthalmologist 

Currently, the ophthalmologist examines the patients manually 
to inspect whether a person has suffered a cataract or not, which is 
time-consuming. Also, the lack of medical facilities, limited 
ophthalmologists, and not being evenly geographically distributed 
will lead to slowing down the medication treatment [6], particularly 
in remote areas. Obviously, the development of an automatic 
cataract screening system could help ophthalmologists speed up the 
screening prior to further medical treatment. In addition, a subjective 
observation might occur when an ophthalmologist analyzes the 
patient’s eye photograph data because of the eye variation from the 
diverse people, and also, it is only based on the eye lens's opacity 
[7]. Therefore, developing an accurate and timely of automatically 
cataract detection remains challenging. 

Meanwhile, emerging machine learning (ML) and advanced 
mobile communications technologies like 5G enable us to perform 
automatic image recognition with an enormous image size from 
remote sensors through mobile networks in many applications [8], 
such as remote surgery tool detection [9, 10], and ML-based retina 
detection [6]. Although the stream of these large images from 
remote devices can be done in real-time due to the capability of the 

5G network, reducing the ML training and inferences time is still 
essential to meet timely automatic image recognition requirements 
[11].  

In the literature, many studies have been developed to detect 
cataract disease automatically, from traditional ML-based to deep 
learning (DL) based approaches [11]. For example, the work in [12] 
proposed feature extraction based on the gray-level co-occurrence 
matrix (GLCM) then, followed by k-Nearest Neighbors in (k-NN) 
as the classifier. However, their model yields unsatisfactory 
accuracy performance. Similarly, GLCM feature extraction was also 
employed in [13], but a high-level feature extraction based on pre-
trained ResNet was fused with GLCM to enhance Support vector 
Machine (SVM) accuracy performance at the top layer. The work in 
[12, 13] mentioned above relies on pre-defined hand-crafted 
features, which are inefficient and might have redundant and 
incomplete features. In addition to GLCM, image segmentation for 
blood vessel feature extraction was introduced prior to SVM 
classifier in [14]. Their work shows that the segmentation procedure 
can enhance accuracy and speed up performance in a real-time 
manner. However, their model is still dependent on hand-crafted 
features and traditional ML classifiers, which might fail to extract 
latent information in the features.  

Thanks to the feature learning in DL allows the model to extract 
the feature automatically from the data. With the advantage of DL, 
researchers have shifted from traditional ML to more advanced DL-
based models to tackle the cataract detection challenge [2, 3, 15, 16]. 
For instance, Deep Convolutional Neural Network (DCNN) was 
studied in [17] to deal with automatic cataract detection based on the 
hospital's real data and combined with the Fundus dataset. Also, the 
SqueezeNet based has developed in [6] with fewer parameters than 
DCNN in [17]. However, the work in [6, 17] was not addressed the 
time execution. Junayed et al. [16]. recently proposed CataractNet 
based on a tailored CNN network to deal with fewer parameters, 
faster running time, and accurate accuracy. Their work varied the 
proportion of training and the testing dataset, where 80% of training 
data found the best performance. All mentioned work above was still 
not considered the image segmentation, which might speed up the 
neural network time execution.  

Recently, a study of image segmentation incorporated with a 
classifier model has been studied. In particular, for detecting fruit 
disease in [18], K-Means clustering was utilized to pre-characterize 
the original images, followed by feature extraction and an SVM 
classifier. Their result shows that segmentation approaches before 
the classifier can perform well with relatively small data. However, 
their work still employs traditional ML, which might limit its 
performance. Another work in [19] develops the model with hybrid 
optimal K-means clustering-based segmentation and Convolutional 
Neural Network (OKM-CNN) to recognize the vehicle's plate 
number. The accuracy is up to 0.98%. This work shows that K-
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Means incorporated with a CNN-based model can enhance 
accuracy. Nevertheless, there were few studies examine a hybrid of 
K-Means with CNN on the Cataract detection problem. Motivated 
with the background introduced above, in this study, we aim to 
examine the effectiveness of the image segmentation approach prior 
to a CNN-Based classifier for cataract detection. We utilized K-
Means based clustering (KMSeg) to deal with image segmentation 
based the color the cataract images prior to classification.Then, a 
feature learning was done with CNN-Based model. The contribution 
of this study are summarized as follows:  

1) We showcase the effectiveness of the proposed KMSeg-
CNN-Based to deal with timely and precise cataract detection. The 
proposed framework can speed up the time execution in terms of 
training and validation time. 

2) Three CNN models based on the DCNN, ResNet18, and 
ResNet50 backbone were implemented with KMSeg. A 
comparative study was provided as a pilot study for decision-makers 
when deploying real-time automatic cataract detection 

3) The proposed framework has been validated with Fundus and 
Front-Eye public datasets. The proposed KMSeg-ResNet18 
outperforms the baseline in terms of time, precision, and F-score on 
the Fundus dataset. Besides, all of the CNN-based with KMSeg 
models display comparable results on Front-Eye datasets yet 
decrease the time execution drastically  

The rest of this paper is organized into five sections. Section II 
details the related study of cataract detection in the previous work, 
and Section III describes the proposed framework and the 
methodology. Section IV showcases the experimental results. 
Finally, in Section V, we draw a conclusion based on our findings. 

II. RELATED WORKS 

The hybrid of several methods in solving problems has been 
increasingly carried out by researchers in the field of machine 
learning in various fields. Generally, the motivation to use a 
combination of methods is to get more optimal system performance 
results. One example of combining clustering and classification 
methods, using SLIC-DBSCAN with CNN, is for the smoke image 
dataset [20]. In their paper, it was found that the use of the SLIC-
DBSCAN model plus CNN as a complementary technique resulted 
in an increase in the results of the existing image classification. 
Where there is an increase in the precision value in the fire class as 
much as 2.49% and non-smoke as much as 3.53%. Another example 
of combining methods is also carried out in the field. There is also a 
paper that combines the Optimal K-means (OKM) algorithm with 
CNN in the case of vehicle plate detection. This paper states that the 
combination of OKM and CNN obtains an accuracy of 98.1 %, 
rivaling ResNet50. This explains that the combination of two 
machine learning methods can be used to produce a good 
classification model [19] 

Previous research also revealed the need to combine 
unsupervised learning and supervised learning algorithms [16]. In 
the research, it was said that no technique outperforms other 
techniques because each technique has high accuracy in each 
different image for image segmentation problems. Therefore, 
knowledge of datasets and combining techniques is needed so that 
they can effectively segment. Another research is on the application 
of unsupervised learning algorithms, which will try to compare the 
testing of 3 algorithms, namely SVM (Support Vector Machine), K-
means, and Enhanced K-means [14]. From the experiments 
conducted, it was found that Enhanced K-means resulted in a good 
accuracy estimate in the range of 55 – 86% where SVM in the range 
of 40.6 – 66.9% and K-means in the range of 49.6 – 77.5%. These 
results indicate that K-means can be relied upon in performing 
clustering, especially when tuning and improvements are made to 
the existing algorithm. The use of K-means as an unsupervised 
learning model to segment images also gives the result that the same 

technique cannot give the same results for all types of images [12, 
13]. This study also reveals that there are 3 methods that can be used 
to improve segmentation results, namely by combining several 
segmentation techniques, tuning machine learning algorithm 
parameters for segmentation and applying the CNN model and then 
segmenting non-machine learning.  

III. METHODOLOGY 

The proposed cataract detection framework is depicted in Fig.1. 
As seen in Fig. 1, it contains three main steps: data pre-processing, 
K-means clustering-based segmentation, and CNN-Based 
classification. First, image transformations like resizing, conversion, 
normalization, and augmentation were employed in the pre-
processing step. Second, K-means clustering was utilized to pre-
characterized the pre-processed RGB images into segmented 
images. Finally, the segmented images were then fed to train the 
CNN-based classifier. A detailed explanation for each step will be 
given in the following. 

 

A. Dataset 

Two public datasets were examined to investigate the 
performance of the proposed framework, namely the Fundus dataset 
which was obtained by ophthalmoscopy [21], and the Front Eye 
dataset [22].. The description of the datasets is depicted in Fig.2. As 
shown in Fig.2., the Fundus dataset contains 100 cataract image 
samples as positive labels, and the rest is labeled as negative samples 
with a total of 400 samples.  In contrast, the Front Eye Dataset 
contains more samples with cataract images of 3714 samples out of  
8068 samples, which is considered a relatively balanced sample. 
Please note that the Front Eye dataset in [22] was curated from a 
google search that is already augmented with ten different 
augmentations techniques. 

B. Preprocessing 

In this step, all the images were resized into 224x224 with 
bilinear interpolation. Also, the images were normalized into the 
range [0,1], subsequently standardized the images with the mean and 
standard deviation, which were set to [0.485, 0.456, 0.406] and 
[0.229, 0.224, 0.225], respectively. Image augmentation, such as 

 

Fig. 2. Dataset proportion and examples 

 

Fig. 1. The proposed cataracts detection framework overview 
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rotation, flipping, zooming, and cropping, was also done before the 
model training. This augmentation was employed because the 
number of samples in Fundus data is relatively small. Similarly, 
image augmentation was also used, which was already provided in 
the Front Eye dataset. The final image sample is transformed into a 
tensor shape of Nx3x224x224, where N is the number of samples 

C. Image Segmentation 

The image segmentation process in the proposed framework is 
based on the color in the image and divided into a particular discrete 
color group. This step aims to reduce the noise and transform the 
image into a more compact image. To achieve that, we then adopted 
the K-Means clustering method called KMSeg. Suppose the input 
image has � � ℎ resolution; then image � � ℎ needs to be grouped 

into � number of the color segment. Let the ��� , ℎ	
 be the first point 

and ���, �

 be the second point, a candidate for the center of the 
color segment, �,  and �  is the index. The distance of the nearest 

centroid can be calculated by Euclidean distance ��, which can be 
rewritten in (1). 

�� ���� , ℎ	�, ���, �

� �  ���� � ��
� � �ℎ	 � �

�     (1) 

The overall step in KMSeg can be seen in Fig. 3. At the initial 
step, the � should be determined, such as � � 5. For each image 
samples take each R, G, and B channel into a 2D array, then assign 
the pixel to the closest center based on ��. Repeat the process until 
meet the threshold tolerance. Finally, reshape the grouped pixel into 
the original image � � ℎ  size. In this work, we vary the �  into 
different scenarios from k= 4 to k=10. The result of KMSeg will 
then be used in the CNN-Based classification model.  

D. Convolution Neural Network Based Classification 

CNN-based model literally shares the same notion, namely, 
feature extraction and fully connected (FC) layer. The feature 
extraction usually consists of convolution operation, non-linearity 
and pooling, considered as one block. The FC layer contains a 
flattened, dense layer, an activation function, and some 
regularization. Despite the success of CNN, determining the 
architectures and hyper-parameter settings can be tricky, 
particularly when developing CNN on different domains and data. 
This study examined three different CNN backbones based on 
DCNN [23], ResNet18 [24], and ResNet50 [24] architectures. All 
layers of the network architecture and parameters can be seen in the 
original work in [23] [24]. The difference is only in the last layer of 
the FC layer. The FC layer's detailed network architecture and 
parameters are shown in Fig. 4. Since the task was designed to 
recognize the cataract and non-cataract only, the binary cross 

entropy (BCE) is employed. The Stochastic Gradient Descent 
(SGD) optimization was taken into account. 

In general, the model complexity of the deep learning model can 
be approximated by the number of parameters (params) and floating 
point operations (FLOPs). A more advanced indicator of FLOPs, the 
multiply-accumulate operations (MACs), was also introduced in the 
literature. The computational cost and complexity of the three CNN-
based cataract detection models used in this work can be seen in 

TABLE 1.  

TABLE 1 CNN-BASED MODEL MEMORY COST AND COMPLEXITY 

Model Input 

Resolution 

No. of Params 

(millions)  

MACs (G) 

DCNN 224x224 57.470 0.7114 

ResNet18 224x224 11.180 1.82 

ResNet50 224x224 23.510 4.12 

DCNN* 224x224 0.00819 0.7114 

ResNet18* 224x224 0.00103 1.82  

ResNet50* 224x224 0.0041 4.12 

KMSeg-DCNN 224x224 57.012 0.7101 

KMSeg-ResNet18 224x224 11.178 1.824 

KMSeg-ResNet50 224x224 23.512 4.132 

 * when pre-trained model used 

E. Experimental Settings 

All the experiments were conducted under Ubuntu 20.04 
environment with the following hardware: Intel Xeon E5-2630 with 
2.20 GHz CPU, 32 GB RAM, and NVIDIA RTX 1080Ti of GPU. 
The development of image pre-processing, augmentation, and 
model implementation was done with python 3.7, OpenCV, and 
PyTorch library. In the proposed framework, all the models were 
trained using the SGD optimizer with a learning rate set to be 0.001, 
10 batches, the number of the epoch is 30 epochs. We use the same 
settings on both Fundus and Front Eye datasets. 80% of the data is 
utilized for training and the rest for validation dan testing. 

F. Evaluation Performances 

In order to evaluate the effectiveness of the proposed framework, 
accuracy, precision, recall, and F-score were examined as the 
measurement metrics. Supposedly the CNN-Based model attempt to 
classify whether the given image is a cataract or non-cataract. This 
classification task can be seen as positive or negative. In the 
validation phase, the actual cataract label predicted as a cataract is 
called a true positive (TP); meanwhile, when mispredicted is called 
a false positive (FP). When an actual non-cataract is predicted as 
non-cataract, that is called a true negative (TN), but if mispredicted, 
that is called a false negative (FN). The accuracy of Acc., the 

 

Fig. 4. KMSeg Image Segmentation Flow Diagram 

 

Fig. 3. Fully Connected Layer of CNN-Based Architectures in Top 
Layer After Feature Extraction. a) DCNN b) ResNet18 c) ResNet50 
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precision of Prec., recall of Rec., and F-score of F1 is computed as 
follows: 

���. �  ��� �!

��� �! "� "!
                           (2) 

#$%�. �  ���

��� "�
                                       (3) 

&%�. �  ���

��� "!
                        (4) 

'1 �  2 � �*+,.  - .+,.
�*+,.    .+,.                      (5) 

 

IV. RESULT AND DISCUSSION 

A. Image Segmentation Result 

The image segmentation has been performed on both Fundus 
and Front Eye datasets for all the image samples. The examples of 
the segmentation result with different k segment numbers are 
depicted in Fig. 5 and Fig. 6 for cataract and non-cataract samples, 
respectively. As can be seen in Fig. 5 and Fig. 6, the bigger the 
number of k segments, the closer the image to the original one. Also, 
the difference between the cataract and non-cataract samples 
became more evident. In the Front Eye dataset, we can notice that 
the color shape of the cataract eye pupil is shifted conspicuously. 
The fundus dataset shows that the cataract eye looks brighter in color 
with more lines than the non-cataract eye. This follows the 
morphological condition of the eye's retina, where the condition of 
the blood vessels and lens of the eye is different between cataract 
patients and non-cataract patients. Please note that segmentation 
prior to classification affects class membership. There might be 
over-segmented, which harm the small detail such as lines and 
artifacts, and under-segmented, which cannot restore small areas in 
the image. Therefore, we vary the number of segments in the 
training phases of CNN-Based network to investigate which number 
of � segment will yield better accuracy. 

B. Accuracy and Time Consumption of CNN-Based Cataract 

Detection Model Performance 

After conducting extensive experiments with a total of 30 
epochs, the best model during the validation phase was then 
selected. The accuracy and loss of the selected models during the 
training and validation phases are depicted in Fig. 7. In Fig. 7, the best 
model of the DCNN (blue color), ResNet18 (green color), and 
ResNet50 (red color) with pre-trained on Fundus dataset achieve at 
23, 10, and 11 of the epochs with 0.46, 0.30, 0.23 of validation loss, 
respectively. Meanwhile, the best model of the KMSeg-DCNN 
(cyan color), KMSeg-ResNet18 (magenta color), and KMSeg-
ResNet50 (yellow color) were obtained when the epoch 10, 9, and 
20 of epochs with loss 0.78,0.29, and 0.28. In addition, the best 

model can be attained when the epochs of 25, 17, 29, 25, 28, and 26 
are reached for DCNN, ResNet18, ResNet50, KMSeg-DCNN, 
KMSeg-ResNet18, and KMSeg-ResNet50 on Front-Eye dataset. 
The loss are 0.0082, 0.062, 0.039, 0.017, 0.075, and 0.058, 
respectively. These models were then used for more detailed 
analysis. 

TABLE II and TABLE IV showcase the performance of the 
proposed KMSeg-CNN Based model on Fundus datasets. As shown 
in TABLE II, the execution time (training and validation process) of 
the CNN-Based model with KMSeg is consistently faster than the 
original CNN without KMSeg across the three different backbones. 
Based on TABLE IV, the minimum execution time needed is in 
KMSeg-ResNet18, which is 245.37 seconds. It means that KMSeg-
ResNet18 can speed up by 0.46 times ResNet18 and 0.38 times 
ResNet18 with a pre-trained model. Similarly, KMSeg-DCNN show 
0.39 and 0.37 times improvement for DCNN with and without the 
pre-trained model, respectively. Compared with the ResNet50 
model, KMSeg-ResNet50 achieves 1.3 times faster than ResNet50 
and 0.29 times faster than ResNet50 with pre-trained.  

KMSeg-DCNN performs higher accuracy of 91.25% when the 
image is segmented with k of 10 clusters. However, when the pre-
trained DCNN was employed, the accuracy increased up to 93.75%.  
KMSeg-ResNet18 shows the highest accuracy of 92.5% when the k 
= 5 and k=7 which also outperforms the original ResNet18. KMSeg-
ResNet50 display a comparable accuracy of 91.25% with original 
ResNet50 when the k = 5 and k = 9. Despite the original DCNN 
result highest accuracy for all the cases on Fundus Dataset, however, 
when we examine the precision, recall, and F1 score metric, it turns 

out the KMSeg-ResNet18 with � of 7 is superior compared to all the 
models, where the F1 score is achieved to be 0.928. Therefore 
KMSeg-ResNet18 with k = 7 is suggested in this study based on the 
Fundus image dataset. 

 

Fig. 5 Accuracy and loss graph visualization of the CNN-Based cataract 
detection model  

 

Fig. 7. Examples of segmentation result on Fundus dataset Fig. 6. Examples of segmentation result on Front Eye dataset 
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TABLE IV PRECISION, RECALL, AND F1 SCORE COMPARISON ON FUNDUS 

DATASET 

Model Time(s) Acc. Prec. Rec. F1 

DCNN 346.46 0.7500 0.7478 0.9926 0.8458 

ResNet18 358.85 0.9125 0.8834 0.9107 0.8834 

ResNet50 646.52 0.8750 0.8362 0.8493 0.8174 

DCNN* 340.92 0.9375 0.9062 0.8908 0.8848 

ResNet18* 335.59 0.8875 0.9194 0.9388 0.9208 

ResNet50* 363.12 0.9125 0.9057 0.9425 0.9159 

KMSeg-DCNN** 248.08 0.9125 0.8940 0.8809 0.8707 

KMSeg-ResNet18*** 245.37 0.9250 0.9247 0.9471 0.9280 

KMSeg-ResNet50**** 280.51 0.9125 0.9073 0.9427 0.9158 

* is the pre-trained model used followed by a fine-tuning in the last layer, ** is segmented by 
k=10, *** is segmented by k=7, and **** is segmented by k=5 

TABLE V PRECISION, RECALL, AND F1 SCORE COMPARISON ON FRONT 

EYE DATASET 

Model Time (s) Acc. Prec. Rec. F1 

DCNN* 842.35 0.9968 0.977 0.978 0.975 

ResNet18* 1716.46 0.9781 0.941 0.959 0.941 

ResNet50* 5294.08 0.9887 0.947 0.965 0.948 

DCNN 2913.83 0.9968 0.965 0.976 0.966 

ResNet18 5289.07 0.9993 0.981 0.988 0.981 

ResNet50 15161.9 0.9987 0.963 0.975 0.963 

KMSeg-DCNN** 642.01 0.9956 0.974 0.974 0.971 

KMSeg-ResNet18*** 1392.42 0.9718 0.933 0.951 0.931 

KMSeg-ResNet50** 4982.88 0.9768 0.964 0.968 0.960 

* is the pre-trained model used then fine-tuning the last layer, ** is segmented into 9 cluster, 
*** is segmented into 10 cluster 

 

In addition to the evaluation of the Fundus dataset, the 
performance measurement was also conducted on the Front Eye 

dataset, which can be seen in TABLE III  and TABLE V. As shown 

in TABLE III, CNN-Based model with KMSeg also exhibits better 
time execution rather than original CNN-Based model. Based on 

TABLE V, the minimum execution time needed is in KMSeg-

DCNN, which is 642.01 seconds, which enhances 3.53 and 0.31 
times the DCNN without and with pre-trained. In contrast, ResNet50 
consumes execution time the most by15161.9 and 5294.08 seconds, 
without and with a pre-trained model. When KMSeg is performed, 

the improvement can be achieved up to 2.04 and 0.06 times without 
and with a pre-trained model. Also, KMSeg-ResNet18 can speed up 
by 2.79 times ResNet18 and 0.23 times ResNet18 with a pre-trained 
model. 

The performance of KMSeg-DCNN reaches up to 99.56 percent 
of accuracy when the number of k is 9. Both KMSeg-ResNet18 and 
KMSeg-ResNet50 show the highest accuracy when the number of 
k=8. As mentioned earlier, accuracy is not always the best measure 
of classification performance. We then validate the performance of 
each model with the precision, recall, and F1 score metric. The 
comparison result can be seen in TABLE V. ResNet18, with no pre-
trained model, was used to outperform overall for the Front Eye 
dataset in terms of F1 score but sacrificed significance time 
execution. Both KMSeg-DCNN and KMSeg-ResNet50 performed 
better F1 when k=9 was carried out. Meanwhile, KMSeg-ResNet18 
resulting a better F1 when k =10 was used. When comparing the 
three CNN-Based with KMSeg and without KMSeg, the F1 score is 
still comparable but yet reduces the time needed drastically. For the 
rest of the experimental results, please refer to TABLE III and 
TABLE V. Based on this experimental study, we suggest the 
KMSeg-CNN-based when time is more critical. 

V. CONCLUSION 

In this paper, we demonstrated the cataract detection framework 
(KMSeg-CNN Based), which consists of image segmentation and 
CNN-based classification. At first, standard image pre-processing 
and augmentation were employed to tackle the small and 
imbalanced dataset. Then, image segmentation is applied prior to 
classification. Three CNN-Based (DCNN, ResNet18, and 
ResNet50) models were compared with the pre-trained and non-pre-
trained models.  Numerous of the k-segment examined from k=4 to 
k=10 to investigate the effectiveness of the proposed framework. 
Two public cataract datasets have been studied in our work. The 
proposed KMSeg-CNN-Based reduces the time execution 
drastically across the dataset, up to three times than the baseline 
when no pre-trained was used and 30% of the baseline when pre-
trained used on the Front Eye dataset. Besides, KMSeg-CNN-Based 
also reduces the time consumption compared to the baseline model 
by up to 130% no pre-trained and 38% with pre-trained on the 
Fundus dataset. Also, the proposed KMSeg-CNN-Based can reach 
up to 0.972 of the F1-score, and 0.928 of the F1-score on Front-Eye 
dataset and Fundus Dataset, respectively. We hope this paper sheds 
light on the experimental result mentioned above when deploying 
automatic cataract detection.  

TABLE II EXPERIMENTAL RESULT ON FUNDUS DATASET 

Model 

  

w/o Seg. Model  k = 4 

  

k = 5 

  

k = 6 

  

k = 7 

  

k = 8 

  

k = 9 

  

k = 10 

  

t* Acc.* t Acc. t Acc. t Acc. t Acc. t Acc. t Acc. t Acc. t Acc. 

DCNN 340.92 93.75 346.46 75.0 KMSeg-DCNN 241.43 88.75 243.49 88.75 243.97 88.75 245.44 88.75 246.59 88.75 245.83 90.0 248.08 91.25 

ResNet18 335.59 88.75 358.85 91.25 KMSeg-ResNet18 240.55 91.25 243.62 92.5 243.59 91.25 245.37 92.5 244.68 88.75 246.74 90.0 258.18 90.0 

ResNet50 363.12 91.25 646.52 87.5 KMSeg-ResNet50 279.96 90.0 280.51 91.25 277.73 88.75 275.58 90.0 289.72 90.0 286.12 91.25 266.91 90.0 

Acc. = Accuracy in percentage unit, t = time needed for training and validation in seconds unit, * = Pre-trained model used, w/o Seg. = No image segmentation, Seg. = Image Segmentation was employed 

TABLE III EXPERIMENTAL RESULT ON FRONT EYE DATASET 

Model w/o Seg. Model  k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 

t* Acc.* t Acc. t Acc. t Acc. t Acc. T Acc. t Acc. t Acc. t Acc. 

DCNN 842.35 99.68 2913.83 99.68 KMSeg-DCNN 650.08 98.31 618.84 99.31 639.34 99.12 641.67 99.37 756.32 99.37 642.01 99.56 654.02 99.50 

ResNet18 1716.5 97.81 5289.07 99.93 KMSeg-ResNet18 1473.91 95.31 1372.76 96.81 1334.29 97.06 1592.25 96.56 1684.00 97.75 1315.79 97.56 1392.42 97.18 

ResNet50 5294.1 98.87 15161.9 99.87 KMSeg-ResNet50 4552.36 96.18 4446.42 97.50 5007.05 97.87 4484.48 98.18 5179.43 98.50 4982.88 97.68 4746.78 98.37 

Acc. = Accuracy in percentage unit, t = time needed for training and validation in seconds unit, * = Pre-trained model used, w/o Seg. = No image segmentation, Seg. = Image Segmentation was employed 
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Nevertheless, the proposed KMSeg is based on the color in the 
pixel. There might be a loss of information in tiny detail, such as the 
lines of the blood vessel. In the future, instance-based segmentation 
is worth investigating to excel in the model capabilities. Moreover, 
a more advanced of the CNN based model with a hybrid local and 
global segmentation, as well as an attention module, can be studied 
to improve the accuracy and precision of the cataract detection 
model performance  
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