The Effect of Indium Oxide

by Nani Djohan

Submission date: 01-Dec-2019 09:45AM (UTC+0700) Submission ID: 1224125862 File name: The_Effect_of_Indium_Oxide_-_Ferroelectrics_Journal.docx (727.27K) Word count: 2713 Character count: 14834

The Effect of Indium Oxide (In₂O₃) Dopant on The Electrical Properties of LiTaO₃ Thin Film Based Sensor

Nani Djohan¹, Budi Harsono¹, Johansah Liman¹, Hendradi Hardhienata², Irzaman²

¹Department of Electrical Engineering, Faculty of Engineering and Computer Science, Krida Wacana Christian University, 11470 Jakarta, Indonesia

²Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, 16680 Bogor, Indonesia

*)Corresponding author: nani.djohan@ukrida.ac.id

Corresponding author: irzaman@apps.ipb.ac.id

The Effect of Indium Oxide (In₂O₃) Dopant on The Electrical Properties of LiTaO₃ Thin Film Based Sensor

Abstract: The effect of the Indium Oxide (In2O3) dopant on the electrical properties of LiTaO₃ thin film based sensor was investigated in this study. LiTaO₃ thin film was made on p-type Si (100) substrates by Chemical Solution Deposition (CSD) method. The LiTaO₃ thin film was annealed at the temperature of 850°C for 15 hours. Surface morphology and elemental characterization analysis was obtained by using SEM-EDX. Then, the dielectric constant value and the photoresistive characteristic of LiTaO₃ thin film were measured to determine the effect of the Indium Oxide dopant on the electrical properties of the thin film. From the results of SEM-EDX measurement, the surface of the thin film is still non-homogeneous, so that the electron flow will be obstructed and from the elemental atomic composition analysis, it appears that the Indium atoms have appeared in the LiTaO3 thin films that was doped by Indium Oxide 2%, 4% and 6%. From the results of thin film dielectric constant calculation, it can be seen that the dielectric constant value does not change between In₂O₃ doped and undoped LiTaO₃ thin film, which is 2.44. While from the photoresistive value, it is seen that the Indium dopant decreases the resistivity and increases the conductivity of the thin film. Based on the results of the photoresistive characteristic measurement, it can be concluded that the LiTaO3 thin film can be used as a light sensor and In2O3 dopant can increase the conductivity of the LiTaO3 thin film.

Keywords: LiTaO₃ thin film; In₂O₃ dopant; SEM-EDX spectroscopy; dielectric constant; Photoresistive sensor

1. Introduction

Rapid development of innovative thin film technology is one of the principle factor of the current smart material technology due to its material and cost efficiencies [1-3]. One of the major goals of modern science and engineering that will have a big impact on technological applications is thin films include electronic semiconductor sensor due to their dielectric constant, dielectric loss, pyroelectric coefficient, and dielectric tunability properties [2,4,5,6]. Ferroelectric thin films are potentially important materials for electronic and optical

electricity. One of the material could be used in making a thin film is Lithium Tantalate (LiTaO₃) [5-12]. As compared to materials like Barium Stronsium Titanate (BST) has high responsivity towards heat and light or NaNO₂ [4,13-16]. LiTaO₃ is ferroelectric material having an excellent of pyroelectric, piezoelectric, refractive, electro-optical and non-linear optical properties. LiTaO₃ is suitable for applications to non-linear optics, integrated optics, optical coating, lasers, sensor like light sensor [1,5,9].

In this paper, we have made a thin film of Lithium Tantalate (LiTaO₃) by adding Indium Oxide (In₂O₃) dopant. The substrate used is p-type silicon material (100), using the CSD method (Chemical Solution Deposition). A CSD method is a method of making thin films by depositing chemical solutions on the substrate, followed by spin coating technique with a rotating speed of 4000 rpm [9-10,17-20]. Scanning Electron Microscopy (SEM) is a microscope that uses the principle of electrons emitted on a sample. SEM could be used in evaluating the surface morphology and thickness of the as-deposited films. Energy– dispersive X-ray spectroscopy (EDX) is an analytical technique used to analyze elements or chemical characterization of LiTaO₃ thin films. The atomic composition contained in the sample were determined by EDX [1,3,21-23].

2. Experimental

In this research, Lithium Tantalate (LiTaO₃) thin film was grown on p-type silicon substrate (100). The substrate was cut into a square size of 1 cm \times 1 cm using a glass cutter. We have cleaned the substrate by dipping in acetone using ultrasonicator device for 15 minutes were repeated sequentially with methanol, and deionized water [9, 22-27]. The LiTaO₃ solution was made by reacting [(LiTaO₃), 99,99%], and 2,5 ml of 2-methoxyethanol [(CH₃OCH₂CH₂OH)] as the solvent. Then, we produce three types of solution with doping 2%, 4%, and 6% indium oxide [(In₂O₃), 99,99%]. The solution was stirred using Vortex

3000. Futhermore, the solution mixture inside ultrasonicator device for 30 minutes which produced a homogenous LiTaO₃ solution. The solution was spin coated on p-type Si(100) substrates at a speed of 4000 rpm for 30 seconds were repeated three times (disposition and rotation) with one minutes break in between by using Chemical Solution Deposition (CSD) method [5-7, 9, 28]. The next step, annealing process was conducted in a furnace model Nabertherm type B410 for 15 hours at temperature of 850°C.

Surface morphology and elemental characterization analysis was obtained by using Scanning Electron Microscopy (SEM), and Energy-Dispersive X-Ray Spectroscopy (EDX). The next step is the process of mounting aluminum contacts as a medium in the measurement. Two aluminum contacts were mounted each on a p-type silicon substrate and a thin film layer with a size of 2 mm × 2 mm. Each aluminum contact will be connected to a cooper wire using a silver paste. Afterwards, the dielectric constant value and the photoresistive characteristic were measured to determine the effect of the Indium Oxide dopant on the electrical properties of thin film. The dielectric constant of the thin film can be obtained by finding the step response of the thin film. From the step response, we can get the time constant (τ) value of the thin film which can be used to calculate the dielectric constant (k) of the thin film. We can get the step response of the thin film by connecting the LiTaO₃ thin film in series with resistor and square wave generator. The step response can then be measured using an oscilloscope. The circuit schematic and connection of the thin film for the step response measurement carried out in this study are given in Figure 1.

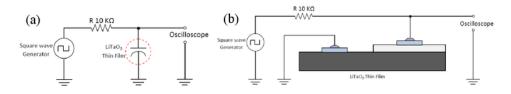


Figure 1. Step response measurement (a) Schematic, (b) Circuit connection

To measure the photoresistive characteristics of the thin film, we use adjustable incandescent lamp as the light source. Then the resistance of the thin film was measured by using digital Ohm meter. The circuit schematic and connection of the thin film for photoresistive characteristics measurement are shown in Figure 2.

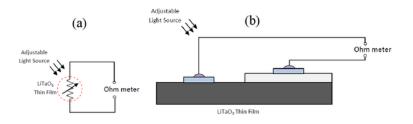


Figure 2. Photoresistive characteristics measurement (a) Schematic, (b) Circuit connection

3. Results and Discussion

3.1 Surface morphology and elemental characterization analysis

Surface morphology and elemental characterization analysis was obtained by using SEM-EDX. The results of morphology and elemental characterization measurement can be seen in Figure 3 and Table 1 respectively. From the surface morphology measurement results we can see that the LiTaO₃ thin films with and without In₃O₂ doping have formed on silicon substrate, but the surface of thin film is still non homogeneous, which causes the flow of electrons in the thin film can be inhibited. Meanwhile, from the analysis of elemental atomic composition, it appears that the Indium atoms have appeared in the LiTaO₃ thin film doped with In₂O₃. This shows that the process of adding In₂O₃ dopants has been successfully done.



Figure 3. Surface Morphology of LiTaO₃ at different doped concentrations (a) Undoped, (b) 2% In₂O₃ doped, (c) 4% In₂O₃ doped, (d) 6% In₂O₃ doped

LiTa Thin Film	Element	(keV)	Mass%	Error%	Atom%	К
Undoped	ОК	0.525	7.12	0.41	46.76	7.0286
	Ta M	1.709	77.65	0.33	45.11	82.8410
	Au M	2.121	15.24	0.59	8.13	10.1304
2% Indium	ОК	0.525	6.93	0.37	45.82	6.8535
doped	In L	3.285	1.82	0.37	1.68	1.7481
	Ta M	1.709	72.84	0.29	42.60	78.5727
	Au M	2.121	18.41	0.50	9.90	12.8257
4% Indium	ОК	0.525	7.49	0.42	47.29	7.2259
doped	In L	3.285	5.53	0.40	4.87	5.4352
	Ta M	1.709	70.48	0.33	39.37	75.6721
	Au M	2.121	16.50	0.55	8.47	11.6668
6% Indium	ОК	0.525	9.56	0.40	53.97	9.2236
doped	In L	3.285	5.08	0.39	4.00	4.9785
	Ta M	1.709	70.73	0.31	35.32	75.5726
	Au M	2.121	14.63	0.53	6.71	10.2253

Table 1. Undoped and In₂O₃ doped LiTaO₃ thin film elemental composition

3.2 Dielectric Constant

The step response measurement results show that there is no difference in the value of time constant (τ) between In₂O₃ doped and undoped LiTaO₃ thin film. Measured LiTaO₃ thin film time constant is 3.6µs. The measurement result of the LiTaO₃ thin film step response can be seen in Figure 4.

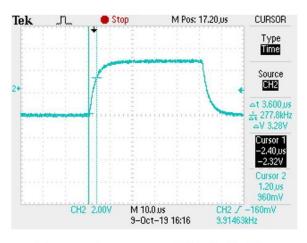


Figure 4. Step response of LiTaO3 thin film

From the measured time constant (τ) the thin film dielectric constant (k) can be calculated as follows:

Series RC circuit resistance $R = 10K\Omega = 10^4\Omega$;

Thin film area A= $0.5 \text{ cm}^2 = 5 \times 10^{-5} \text{m}^2$;

Thin film thickness $d=3\mu m = 3x10^{-6}m$;

Permittivity of vacuum $\varepsilon_0=8.854 x 10^{-12}$ F/m

$$C = \frac{\tau}{R} = \frac{3.6x10^{-6}s}{10^4\Omega} = 3.6x10^{-10}F$$
$$k = \frac{Cd}{\varepsilon_0 A} = \frac{(3.6x10^{-10}F)(3x10^{-6}m)}{(8.854x10^{-12}F/m)(5x10^{-5}m^2)} = 2,44$$

3.3 Photoresistive Characteristics

The result of the measurement of LiTaO₃ thin film photoresistive characteristics are shown in Figure 5. From the results of the measurement, it can be seen that the value of the resistance of the thin film decreases when the intensity of light that hits the surface of the thin film increases. Photoresistive characteristics measurement also indicate that LiTaO₃ thin film without In_2O_3 dopant has resistance value higher than 70MΩ, whereas LiTaO₃ thin film with In_2O_3 dopant has resistance value below 10MΩ. From the measurement results it can be concluded that LiTaO₃ thin film can be used as light sensor and the addition of In_2O_3 dopant can reduce the resistivity of thin film or in other words can increase the conductivity of the thin film.

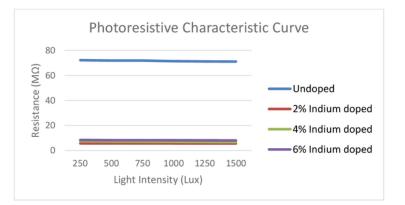


Figure 5. Photoresistive characteristic of undoped and In₂O₃ doped LiTaO₃ thin film

4. Conclusion

We have successfully made LiTaO₃ thin film grown on p-type silicon substrate (100) by CSD method with 2%, 4% and 6% In₂O₃ doping at 850°C annealing temperature. Based on the results of photoresistive characteristic measurement, it can be concluded that LiTaO₃ thin film can be used as a light sensor and In₂O₃ dopant can increase the conductivity of the LiTaO₃ thin film.

2 Acknowledgment

This study was supported by the Ministry of Research, Technology and Higher Education of

the Republic of Indonesia through the Research Grant No. 004/AKM/MONOPNT/2019.

References

- [1] Irzaman, M Zuhri, Novitri, Irmansyah, A A Setiawan and H Alatas: Surface Morphology Properties Doped RuO₂ (0, 2, 4, 6%) of Thin Film LiNbO₃, *IOP Conf Ser.*: 1282 (2019) 012040, 2019.
- [2] Irzaman, H Syafutra. R Siskandar, Aminullah amd H Alatas: Modified Spin Coating Method for Coating and Fabricating Ferroelectric Thin Films as Sensors and Solar Cells, INTECH, 2017.
- [3] R Grissa, V Fernandez, N Fairley, J Hamon, N Stephant, J Rolland, R Bouchet, M Lecuyer, M Deschamps, D Guyomard and P Moreau: XPS and SEM-EDX Study of Electrolyte Nature Effect on Li Electrode in Lithium Metal Batteries, ACS Publications, September 2018.
- [4] B Harsono, J Liman, A Kurniawan, J Iskandar, E Rohaeti, Irzaman: Ba_{0.5}Sr_{0.5}TiO₃ based Photodiode Application as Light Sensor for Automatic Lighting Control System, Integrated Sci-Tech, 2015.
- [5] N Djohan, R Estrada, D Sari, M Dahrul, A Kurniawan, J Iskandar, H Hardhienata, and Irzaman: The effect of annealing temperature variation on the optical properties test of LiTaO₃ thin films based on Tauc Plot method for satellite technology, *IOP Conf. Ser.: Earth Environ. Sci*, Vol. 54(1), No. article 012093, February 2017.
- [6] N Djohan, R Estrada, F. I. W. Sari, A Kurniawan, J Iskandar, M Dahrul, H Hardhienata, and Irzaman: Classification of undoped and 10% Ga₂O₃-doped LiTaO₃ thin films based on electrical conductivity and phase characteristic, *ARPN J. Eng. Appl. Sci.*, Vol 12 (12), pp. 3779-3782, June 2017.
- [7] R Estrada, N Djohan, D Pasole, M Dahrul, A Kurniawan, J Iskandar, H Hardhienata, and Irzaman: The optical band gap of LiTaO₃ and Nb₂O₅ – doped LiTaO₃ thin films based on Tauc Plot method to be applied on satellite, *IOP Conf. Ser.: Earth Environ. Sci.*, Vol 54 (1), No. article 012092, February 2017.
- [8] R. Estrada, N. Djohan, G. C. Rundupadang, A. Kurniawan, I. Iskandar, M Dahrul, H. Hardhienata, Irzaman: Electrical Properties Test of Dielectric Constant and Impedance Characteristic Thin Films of LiTaO₃ and 10% Ga₂O₃-doped LiTaO₃, *ARPN Journal of Engineering and Applied Sciences*. 12: 3813-3816 (2017).

- [9] N Djohan, R Estrada, N Sevani, H Hardhienata and Irzaman: Crystalline Structure and optical properties of thin film LiTaO₃, *IOP Conf Ser.: Earth Environ*.Sci. 284012039, 2019.
- [10] N Djohan, R Estrada, N Sevani, H Hardhienata, Irzaman: The Optical Band Gap Based on K-M Function on layer of LiTaO₃ with Variation Treatment of Annealing Temperature, ICSGTEIS 2018, October 2018.
- [11] F. I. W. Sari, N Djohan, A Kurniawan, E Rohaeti, Irzaman: Analisis Energy Gap dan Indeks Bias LiTaO₃ Didadah Ga₂O₃ Berdasarkan Metode Reflektansi, Proseding Seminar Nasional Fisika dan Aplikasinya, November 2015.
- [12] G. C. Rundupadang, R Estrada, A Kurniawan, E Rohaeti, Irzaman: Sifat Optik LiTaO₃ Didadah Ga₂O₃ Berdasarkan Metode Tauc Plot, Proseding Seminar Nasional Fisika dan Aplikasinya, November 2015.
- [13] J Liman, B Harsono, A Kurniawan, J Iskandar, E Rohaeti, Irzaman: Making Photodiode Based on Ba0.5Sr0.5TiO3 Thin Film on P-type Si (100) Substrate with Chemical Solution Deposition (CSD) Method, Integrated Sci-Tech, 2015.
- [14] J. Liman, B Harsono, T. T. Rohman, U Trimukti, M Khalid, E Roharti, Irzaman: Uji Sifat Optik Film Tipis Ba0.5Sr0.5TiO3 Di Atas Substrat Corning Glass 7059, Proseding Pertemuan Ilmiah XXIX Jateng & DIY, April 2015.
- [15] Y. A. Bonga, J. Liman, A Kurniawan, E Rohaeti, Irzaman: Analisis Energy Gap dan Indeks Bias Film Tipis Ba0.5Sr0.5TiO₃ Didadah Ga₂O₃ Berdasarkan Metode Reflektansi, Proseding Seminar Nasional Fisika dan Aplikasinya, November 2015.
- [16] A Parapa, B Harsono, A Kurniawan, E Rohaeti, Irzaman: Sifat Optik Film Tipis Ba0.5Sr0.5TiO₃ Didadah Ga₂O₃ Berdasarkan Metode Tauc Plot, Proseding Seminar Nasional Fisika dan Aplikasinya, November 2015.
- [17] Irzaman, H Darmasetiawan, H Hardhienata, R Erviansyah, Akhiruddin, M Hikam, P Arifin. Electrical Properties of Photodiode BST Thin Film Doped with Ferrium Oxideusing Chemical Deposition Solution Method. J. At. Indonesia, Batan. 2010. 6(2), 57–62. (in Indonesia).
- [18] Irzaman, H Syafutra, H Darmasetiawan, H Hardhienata, R Erviansyah, F Huriawati, Akhiruddin, M Hikam, P Arifin. Electrical Properties of Photodiode Ba0.25Sr0.75TiO3 (BST) Thin Film Doped with Ferric Oxide on p-type Si (100) Substrate using Chemical SolutionDeposition Method. At. Indonesia. 2011. 37(3), 133–138. (in Indonesia).
- [19] Irzaman, H Syafutra, E Rancasa, A W Nuayi, T G N Rahman, N A Nuzulia, I Supu, Sugianto, F Tumimomor, Surianty, O Muzikarno, Masrur. The Effect of Ba/Sr ratio on Electrical and Optical Properties of Bax Sr(1-x)TiO3 (x = 0.25; 0.35; 0.45; 0.55) Thin Film Semiconductor. Ferroelectrics. 2013. 445(1), 4–17.

- [20] Irzaman, AMaddu, H Syafutra, A Ismangil. Test on Electrical Conductivity and Dielectric of Lithium Tantalite (LiTaO3) Doped by (Nb2 O5) using Chemical Deposition Method. In: Proceedings of National Workshop on Physics. 2010. pp. 175–183. (in Indonesia)
- [21] Y Motemani, C Khare, A Savan, M Hans, A Paulsen, J Frenzel, C Somsen, F Műcklich, G Eggeler and A Ludwig: Nanostructured Ti-Ta Thin Films Synthesized by Combination Glancing Angle Sputter Deposition, IOP Publishing, 2016.
- [22] C Zhao, X Zhang, M Lv, M Zhang, D Wang, Z Zhang, D Fang, J Wang: A Novel Photocatalyst, Y₂SiO₅;Pr³⁺,Li/Pt-Nanb_xTa_{1-x}O₃, for Highly Efficient Photocatalytic Hydrogen Evolution Under, Jurnal of Molecular Liquids 277 (2019) 1-9. 2019
- [23] A Abdel-Ghany, R. S. El-Tawil, A. M. Hashem, A. Mauger, C. M. Julien: Improved Electrochemical Performance of LiNio.5Mno.5O2 by Li-enrichment and AlF3 Coating, Materialia 5 (2019) 100207, 2019.
- [24] Irzaman, R Siskandar, N Nabilah, Aminullah, B Yuliarto, K A Hamam, and H Alatas. Application of lithium tantalate (LiTaO₃) films as light sensor to monitor the light status in the Arduino Uno base energy-saving automatic light prototype and passive infrared sensor. *Ferroelectric*. 2018.
- [25] Irzaman, H Sitompul, Masitoh, M Misbakhusshudur, and Mursyidah. Optical and structural properties of lanthanum doped lithium niobate thin films. *Ferroelectric*. 2016.
- [26] Irzaman, R Siskandar, Aminullah, Irmansyah, and H Alatas. Characterization of Ba_{0.55}Sr_{0.45}TiO₃ films as light and temperature sensors and its implementation on automatic drying system model *Integr. Ferroelectric.* 2016.
- [27] Irzaman, I R Putra, Aminullah, H Syafutra, H Alatas. Development of ferroelectric solar cells of barium strontium titanate (Ba_xSr_{1-x}TiO₃) for subtituting conventional battery in LAPAN-IPB Satellite (LISAT). *Procedia Environ. Sci.* 2016.
- [28] Irzaman, Irmansyah, H Syafutra, A Arif, H Alatas, Y Astuti, Nurullaeli, R Siskandar, Aminullah, G P A Sumiarna, and Z A Z Jamal. Effect of annealing times for LiTaSiO₅ thin films on structure, nano scale gain size and band gap. 2014.

The Effect of Indium Oxide

ORIGIN						
	%	0%	14 %	5%		
SIMILARITY INDEX		INTERNET SOURCES	PUBLICATIONS	STUDENT P/	STUDENT PAPERS	
PRIMAR	RY SOURCES					
1	Ardian A Morphol of Thin F	, Mahfuddin Zuhri arif Setiawan, Hus ogy Properties Do Film LiNbO ", Jour nce Series, 2019	sin Alatas. " Su oped RuO (0, 2	rface 2, 4, 6%)	8%	
2	Irzaman propertie	n, R Estrada, N S . " Crystalline stru es of thin film LiTa Earth and Environ	icture and option O ", IOP Conf	cal erence	4%	

Exclude quotes	Off	Exclude matches	< 3%
Exclude bibliography	On		

The Effect of Indium Oxide

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	
PAGE 9	
PAGE 10	
PAGE 11	