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RINGKASAN 

 

IWAN AANG SOENANDI. Optimasi Real-Time untuk Esterifikasi Asam Oleat 

dengan Gliserol Menggunakan Seleksi Sensor Inframerah Secara Adaptif. Dibimbing 

oleh TAUFIK DJATNA, ANI SURYANI dan IRZAMAN. 

 

Monogliserida sebagai salah satu produk esterifikasi yang antara lain adalah 

gliserol monooleat diperlukan sebagai bahan baku dengan jumlah yang meningkat 

sepanjang tahun dalam industri obat-obatan, kosmetik dan perawatan tubuh lainnya. 

Berdasarkan peningkatan tersebut maka produksi dari gliserol monooleat dengan 

menggunakan bahan baku asam lemak menengah atau rantai panjang memberikan 

peluang untuk dioptimasi lebih lanjut. 

Untuk mengoptimalkan produksi Gliserol MonoOleat (GMO) dengan 

proses esterifikasi yang memiliki gangguan dan ketidakpastian dalam proses reaksi 

yang berlangsung di dalam reaktor akan digunakan metode optimasi secara real-

time (RTO). Dari penelaahan pada penelitian sebelumnya, ditemukan bahwa 

aplikasi RTO dapat digunakan pada proses yang berlangsung untuk mengevaluasi 

variabel dalam operasi, dan dalam perkembangan selanjutnya beberapa penelitan 

menerapkan aplikasi RTO untuk proses kimia berdasarkan pengamatan dari 

komposisi produk.  

Berdasarkan motivasi utama penelitian ini, dirumuskan lima tujuan besar  

yaitu: (1) untuk membuat model simulasi proses esterifikasi secara real-time 

dengan dukungan metode Self-Optimization (SO), (2) untuk membangun sistem 

monitoring secara real-time dengan menggunakan metode klasifikasi, (3) untuk 

mengembangkan model optimasi menggunakan RTO pada proses esterifikasi 

menggunakan  kontrol cluster secara adaptif, (4) untuk meningkatkan metode RTO 

dengan sistem seleksi gradien sensor yang adaptif, dikombinasikan dengan metode 

classification pada proses batch dan (5) untuk mendesain model scaling-up 

menggunakan metode RTO untuk proses batch. Untuk memenuhi tujuan tersebut, 

sebagai langkah pertama adalah pembuatan analisis sistem awal dengan diagram 

Business Process Modelling and Notation (BPMN 2.0) untuk mendeskripsikan 

fungsi SO dari alur kerja yang bekerja sama dan berkorelasi sebagai hasil abstraksi 

pada fase konseptual. Selanjutnya, pemodelan sistem kontrol, yang dibuat  

menggunakan simulasi Stateflow, untuk mensimulasikan tiga kelompok dari 

control state menggunakan klasifikasi dengan metode SVM dan pada akhirnya 

divalidasi dalam skala laboratorium untuk pengukuran kinerja pada sistem baru 

yang dikembangkan ini. 

Penelitian ini menggunakan hasil validasi dengan skala laboratorium 

menggunakan metode RTO dengan seleksi sensor secara adaptif, menunjukkan 

peningkatan hasil hingga 14%, mengurangi durasi proses sebesar 20 menit, 

kecepatan rotasi pengaduk efektif adalah 300rpm sampai 450rpm dan suhu akhir 

pada rentang 200°C sampai 210°C. Rekomendasi dari penelitian saat ini, maka 

diperlukan peningkatan mutu bahan komponen dari sensor-sensor, terutama sensor 

yang tahan digunakan dalam suhu dan tekanan tinggi serta integrasi peralatan untuk 

kontrol yang lebih baik dan cepat. 
 

Kata kunci: Optimasi Real-Time, pemodelan, Simulasi, Sensor Adaptif, Support Vector 

Machine (SVM), State Control, pengukuran gradien. 



SUMMARY 

 

IWAN AANG SOENANDI. Real-Time Optimization for Oleic Acid Esterification 

With Glycerol Using Adaptive Infrared Sensors Selection. Supervised by TAUFIK 

DJATNA, ANI SURYANI and IRZAMAN. 

 

The esterification product such as monoglyceride and diglyceride are 

representing high needs as modifying agents and showing steadily incremental for 

consumption in the future, as they have various industrial application. This product 

as a raw material required in pharmaceutical, cosmetics, and personal care 

industries. Several constraints occur in the production of derivatives of glycerol by 

esterification process, particularly on the yield of target production which is 

unstable and lacking of efficiency.  

In order to optimize esterification process with glycerol to produced 

glycerol monooleate which has to cover various disturbance and uncertainty in real-

time mode, a Real-Time Optimization (RTO) with adaptively selection sensors was 

proposed as a new development to the solution. Developed since 1995, RTO has 

been used to indicate the continuous re-evaluation of selecting variables in 

operation; furthermore, RTO was used for the current chemical process based on 

product composition.  

According to its main motivation, five research objectives were formulated  

are (1) to deploy a simulation model of esterification with real-time simulation to 

support Self-Optimization (SO), (2) to build real-time monitoring system using 

classification method, (3) to develop a model of optimization in RTO for 

esterification process using real-time clustering adaptive control, (4) to improve 

RTO method with adaptive sensors selection system, supported by classification 

method measured in a batch process and (5) to design scaling-up model using RTO 

method in a batch process.. 

To fulfill those objectives first, a Business Process Modelling and Notation 

(BPMN 2.0) was built to describe the tasks of SO workflow in collaboration with 

NCO as an abstraction for conceptual phase. Next, to use the model, its 

implementation with Stateflow package was deployed to simulate the three states 

of control using SVM classification. Finally, validation was run for this proposed 

system.  

In validation, the result of RTO with adaptive sensors selection showed an 

increase of the yield up to 14%, process duration reduction by 20 minutes, with the 

effective stirrer rotation was 300rpm to 450rpm and final temperature between 

200°C to 210°C. This improvement, hopefully this new system will be applied for 

industrial sector.  For scaling up recommendation, it is necessary to improve the 

quality of the sensor component materials especially for high temperature and 

pressure. Also needed the improvement of control system integration, to make it 

faster and more precision. 

 

Keywords: Real-Time Optimization, Modelling, Simulation, Adaptive Sensors, 

Support Vector Machine (SVM), State Control, Gradient Measurement 
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GLOSSARY 

 
Adaptive : readily capable of adapting or of being adapted 

Arduino : an open-source project that created microcontroller-based 

kits for building digital devices and interactive objects that 

can sense and control physical devices 

BPMN : Business Process Modelling and Notation is a graphical 

representation for specifying business processes in a 

business process model. 

Computational 

intelligence 
: the ability of a computer to learn a specific task from data 

or experimental observation 

Esterification : conversion of an acid into an ester by combination with a

n alcohol and removal of a molecule of water 

Event-based 

simulation 
: simulation that operate by taking events, one at a time, and 

propagating them through a design until a steady state 

condition is achieved 

FFA : Free Fatty Acid, when fatty acids circulating in the plasma 

(plasma fatty acids) are not in their glycerol ester form 

(glycerides), they are known as non-esterified fatty acids 

(NEFAs) or free fatty acids (FFAs) 

FTIR : Fourier Transform Infrared Spectroscopy  is a technique 

which is used to obtain an infrared spectrum of absorption 

or emission of a solid, liquid or gas 

GCMS : Gas Chromatography–Mass Spectrometry is an analytical 

method that combines the features of gas-chromatography 

and mass spectrometry to identify different substances 

within a test sample. 

Glycerol : also called glycerine or glycerin (C3H8O3) is a simple 

polyol compound. It is a colorless, odorless, viscous liquid 

that is sweet-tasting and non-toxic. 

GMO : Glycerol MonoOleate are used as emulsifiers or oiling 

agents for foods, spin finishes and textiles; antifoaming 

and antistatic agents for plastics; and lubricants, water 

treatment, metal working fluids, and dispersing agents. 

End applications include cosmetics, foods, personal care 

products, medicine, pesticides, paper making, plastics and 

paints. 

Gradient : the degree of inclination, or the rate of ascent or descent 

Infrared : producing or using rays of light that cannot be seen and 

that are longer than rays that produce red light 

K-means : cluster analysis in data mining that aims 

to partition n observations into k clusters in which each 

observation belongs to the cluster with the nearest mean, 

serving as a prototype of the cluster 

   

  

  



   

Laplace 

transform 
: an integral transform named after its discoverer Pierre-

Simon Laplace. It takes a function of a positive real 

variable t (often time) to a function of a complex variable 

s (frequency). 

Measurement : the act or process of measuring something 

Microcontroller : is a small computer on a single integrated circuit 

containing a processor core, memory, and programmable 

input/output peripherals 

Modelling : graphical, mathematical (symbolic), physical, or verbal 

representation or simplified version of a concept, 

phenomenon, relationship, structure, system, or an aspect 

of the real world 

Oleic Acid : a colorless, odorless, liquid, water insoluble , unsaturated 

acid C18 H34O2 obtained from animal tallow and natural 

vegetable oil 

Optimization : an act, process, or methodology of making something (as 

a design, system, or decision) as fully perfect, functional, 

or effective as possible 

PID Controller : a proportional–integral–derivative (PID) controller is a 

control loop feedback mechanism (controller) commonly 

used in industrial control systems. 

Pillar K-means  : an algorithm that has a new approach to optimizing the 

designation of initial centroids for K-means clustering 

Real-time : relating to applications in which the computer must 

respond as rapidly as required by the user or necessitated 

by the process being controlled 

RELIEF : Reliable Elimination of Features is a feature selection 

algorithm used in binary classification (generalizable to 

polynomial classification by decomposition into a number 

of binary problems) proposed by Kira and Rendell in 1992 

ROC : Receiver Operating Characteristic or ROC curve, is a 

graphical plot that illustrates the performance of a binary 

classifier system as its discrimination threshold is varied 

RTO : Real-Time Optimization the optimum values of the set 

points are re-calculated on a regular basis (e.g., every 

minutes, hour or every day) 

RTS : Real Time Simulation refers to a computer model of a 

physical system that can execute at the same rate as actual 

"wall clock" time. In other words, the computer model runs 

at the same rate as the actual physical system 

Scale-up : the migration of a process from the lab-scale to the pilot 

plant-scale or commercial scale 

Selection : the act of choosing something from a group 

Sensor : a device that detects and responds to some type of input 

from the physical environment 



Simulation : imitation or representation, as of a potential situation or in 

experimental testing 

State : the system's modes of operation, represent the logic for 

switching between modes using transitions and junctions 

Stateflow® : an environment for modeling and simulating 

combinatorial and sequential decision logic based on state 

machines and flow charts 

SO : Self-Optimization is a process in which settings are 

autonomously and continuously adapted for optimizing the 

system 

SVM : Support vector machine are supervised learning models 

with associated learning algorithms that analyze data for 

classification and regression analysis 

SQL : Structured Query Language is  is a special-purpose 

domain-specific language used in programming and 

designed for managing data held in a relational database 

management system 
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GLOSSARY 

 
Adaptive : readily capable of adapting or of being adapted. 

Arduino : an open-source project that created microcontroller-based 

kits for building digital devices and interactive objects that 

can sense and control physical devices. 

BPMN : Business Process Modelling and Notation is a graphical 

representation for specifying business processes in a 

business process model. 

Computational 

intelligence 
: the ability of a computer to learn a specific task from data 

or experimental observation. 

Esterification : conversion of an acid into an ester by combination with a

n alcohol and removal of a molecule of water. 

Event-based 

simulation 
: simulation that operate by taking events, one at a time, and 

propagating them through a design until a steady state 

condition is achieved. 

FFA : Free Fatty Acid, when fatty acids circulating in the plasma 

(plasma fatty acids) are not in their glycerol ester form 

(glycerides), they are known as non-esterified fatty acids 

(NEFAs) or free fatty acids (FFAs). 

FTIR : Fourier Transform Infrared Spectroscopy  is a technique 

which is used to obtain an infrared spectrum of absorption 

or emission of a solid, liquid or gas. 

GCMS : Gas Chromatography–Mass Spectrometry is an analytical 

method that combines the features of gas-chromatography 

and mass spectrometry to identify different substances 

within a test sample. 

Glycerol : also called glycerine or glycerin (C3H8O3) is a simple 

polyol compound. It is a colorless, odorless, viscous liquid 

that is sweet-tasting and non-toxic. 

GMO : Glycerol Monooleic are used as emulsifiers or oiling 

agents for foods, spin finishes and textiles; antifoaming 

and antistatic agents for plastics;  and lubricants, water 

treatment, metal working fluids, and  dispersing agents. 

End applications include cosmetics, foods, personal care 

products, medicine, pesticides, paper making, plastics and 

paints. 

Gradient : the degree of inclination, or the rate of ascent or descent. 

Infrared : producing or using rays of light that cannot be seen and 

that are longer than rays that produce red light. 

K-means : cluster analysis in data mining that aims 

to partition n observations into k clusters in which each 

observation belongs to the cluster with the nearest mean, 

serving as a prototype of the cluster. 



xii 
 

   

   

Laplace 

transform 
: an integral transform named after its discoverer Pierre-

Simon Laplace. It takes a function of a positive real 

variable t (often time) to a function of a complex variable 

s (frequency). 

Measurement : the act or process of measuring something. 

Microcontroller : is a small computer on a single integrated circuit 

containing a processor core, memory, and programmable 

input/output peripherals. 

Modelling : graphical, mathematical (symbolic), physical, or verbal 

representation or simplified version of a concept, 

phenomenon, relationship, structure, system, or an aspect 

of the real world. 

Oleic Acid : a colorless, odorless, liquid, water insoluble , unsaturated 

acid C18 H34O2 obtained from animal tallow and natural 

vegetable oil. 

Optimization : an act, process, or methodology of making something (as 

a design, system, or decision) as fully perfect, functional, 

or effective as possible 

PID Controller : a proportional–integral–derivative (PID) controller is a 

control loop feedback mechanism (controller) commonly 

used in industrial control systems. 

Pillar K-means  : an algorithm that has a new approach to optimizing the 

designation of initial centroids for K-means clustering. 

Real-time : relating to applications in which the computer must 

respond as rapidly as required by the user or necessitated 

by the process being controlled. 

RELIEF : Reliable Elimination of Features is a feature selection 

algorithm used in binary classification (generalizable to 

polynomial classification by decomposition into a number 

of binary problems) proposed by Kira and Rendell in 1992 

ROC : Receiver Operating Characteristic or ROC curve, is a 

graphical plot that illustrates the performance of a binary 

classifier system as its discrimination threshold is varied. 

RTO : Real-Time Optimization the optimum values of the set 

points are re-calculated on a regular basis (e.g., every 

minutes, hour or every day). 

RTS : Real Time Simulation refers to a computer model of a 

physical system that can execute at the same rate as actual 

"wall clock" time. In other words, the computer model runs 

at the same rate as the actual physical system. 

Scale-up : the migration of a process from the lab-scale to the pilot 

plant-scale or commercial scale. 
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Selection : the act of choosing something from a group. 

Sensor : a device that detects and responds to some type of input 

from the physical environment. 

Simulation : imitation or representation, as of a potential situation or in 

experimental testing. 

State : the system's modes of operation, represent the logic for 

switching between modes using transitions and junctions 

Stateflow® : an environment for modeling and simulating 

combinatorial and sequential decision logic based on state 

machines and flow charts. 

SO : Self-Optimization is a process in which settings are 

autonomously and continuously adapted for optimizing the 

system. 

SVM : Support vector machine are supervised learning models 

with associated learning algorithms that analyze data for 

classification and regression analysis. 

SQL : Structured Query Language is  is a special-purpose 

domain-specific language used in programming and 

designed for managing data held in a relational database 

management system. 

 

 

 

 

 
 

 



1 INTRODUCTION 
 

Background 

 

Esterification product such as monoglyceride and diglyceride are 

representing high demand as modifying agents and showing steadily incremental 

demand for consumption in the future, as they have various industrial application, 

particularly as the main raw material in pharmaceutical, cosmetics and personal 

care, as well as in ink manufacturing (Pagliaro and Rossi 2008; Prasetyo et al. 2012; 

Fernandez et al. 2005). Another use for derivative products of glycerol is for mixing 

substances to produce OBM (Oil Based Mud) and WBM (Water Based Mud) in oil 

mining industries in Indonesia. Production of Monoglyceride from esterification of 

glycerol and synthesis of middle or long-chain fatty acids offers promising 

industrial opportunities (Mostafa 2013). Then, to optimize the esterification 

reaction, it is essential to conduct it in real-time mode, which has to cover various 

disturbance and uncertainty. In recent years, spectroscopic methods using infrared 

has gained popularity to be chosen for industrial process control in real-time, 

especially for esterification process (Blanco et al. 2004).  

In esterification, as previously researched (Hui 1996) there is some 

influence of process variables, such as temperature and time requirement in reactor 

that affected their efficiency. In esterification process has several constraints, such 

as inconstant yield of production target and lack of efficiency as there is a 

synthesizing reaction that requires high-energy use in the reactor to achieve desired 

temperature and time for the process (Mostafa 2013). 

As the stage in these dissertation, in order to optimize the esterification 

process in real-time mode, this research started with challenges are to model a Self-

Optimization in real-time simulation of esterification, to build a real-time 

classifying system of esterification, to develop an optimized model for esterification 

process using real-time clustering adaptive control, to improve esterification 

process with real time adaptive sensors selection system, and to design a scale-up 

esterification process in proposed model for batch production. 

For the purpose to solve those objectives, we used RTO concept that was 

developed based on SO, which is defined in Skogestad (2000) as an achievement 

for an acceptable loss with constant set point values for the controlled variables, 

without has to re-optimize when has disturbances. This method was combined with 

Necessary Condition Optimum (NCO) (Srinivasan and Bonvin 2007). However, 

according to Ye et al. (2012), it is necessary to measure all of the NCO components 

in real-time using sensors. For this research, we claimed of this new optimization 

method, supported with measurement using sensors with several types in medium 

wavelengths in IR spectrum named mid-IR and a real-time data acquisition system 

supported with computational intelligence was new. This new method also useful 

for chemical industry application that has dynamic condition such as in 

esterification process.  

To deploy a requirement model of the system, analysis and design of the 

dynamic condition of glycerol esterification production in detail was built on 

Business Process Model and Notation version 2.0 (Lin et al. 2002). This new model 

implemented as support by computational intelligence methods such as Support 

Vector Machine (SVM) for classification (Vapnik 2000) and Pillar k-means for 
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adaptive clustering (Barakbah 2010). Next, to determine the state group in control 

the proposed system consists of several variables such as temperature and stirring 

speed of the reactor. Finally, by finding optimization parameters that have to be 

fulfilled, which consisted of process time and yield, focuses on the production of 

Glycerol Monooleate (GMO) with 130 minutes observation time. 

 

Problem Statement 

 

It has always been a big challenge for chemical industries to develop the 

production system as regard to its complexity. In order to optimize esterification 

process in real-time mode, RTO was chosen as a development method which 

involves control variable in its process. Thus, there were several problems related 

to the optimization of esterification based on RTO, as follows: 

1. How to model a self-optimization in real-time simulation of esterification? 

2. How to build a real-time classifying system of esterification? 

3. How to develop an optimized model for esterification process using real-time 

clustering adaptive control? 

4. How to improve esterification process with real time adaptive sensors selection 

system? 

5. How to design a scale-up esterification process in proposed model for batch 

production? 

Objectives 

 

Based on the problem statement above, there are five main objectives 

formulated in this research as follows: 

1. to model a self-optimization in real-time simulation of esterification, 

2. to build a real-time classifying system of esterification, 

3. to develop an optimized model for esterification process using real-time 

clustering adaptive control, 

4. to improve esterification process with real time adaptive sensors selection 

system, 

5. to design a scale-up esterification process in proposed model for batch 

production. 

 

Benefits 

 

 The most accomplished result in integration method RTO with adaptive 

selection for future implementation was contributed to support a prediction of 

production volume with real-time simulation, improving identification of 

esterification stage in real time mode, deploying states control model precisely with 

adaptive selection sensor and operating more efficient in a batch process. 

 

Boundaries 

  
In order to focus on the solution as the mentioned issue, we are doing all the 

experimental studies in laboratory scale in batch system. We also used some 

assumption in this research such as the reaction was conducted with raw material 
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of glycerol 80% and 90% purity, mixed with oleic acid in 1:1 ratio and focused on 

the target production of Glycerol Monooleate. The process was observed in range 

between 90 to 130 minutes using catalyst Methyl Ester Sulfonic Acid (MESA) 0.5% 

and the performance of apparatus was in normal and standard condition. The 

product of esterification was tested with FTIR and GCMS to measure the yield of 

Glycerol Monooleate. 

 

Novelty of Research 

 

According the combinations of methods that was developed. This 

dissertation has several novelties such as the application of analysis and design in 

esterification process using BPMN 2.0 diagram, the model deployment for real- 

time measurement using sensor in esterification process and the development for 

adaptive real-time monitoring and control combined with computational 

intelligence to support Real-Time Optimization. 

 

 

 



Glycerol Monooleate 

2 METHODS 
 

Simulation and Laboratory Experiments 

 

In simulation stages, a group of synthetic data for quality target that found 

from literature was used to simulate the process of esterification to measure the 

performance of the system using real-time discrete simulation and found the related 

parameter of quality using feature selection method. 

 

 

  

 

 

 

Figure 1 Esterification reaction (Pagliaro and Rossi 2008) 

 

In laboratory scale, the reaction as described in Figure 1 was performed in 

a four-necked glass reactor with a 1000 ml volume. Glycerol mixed with oleic acid 

and required amounts of catalyst MESA were used for each experiment. The 

catalyst amount was based on weight percentage of oleic acid. The reaction time 

was defined as zero when the temperature reached the set point since negligible 

conversions were observed. The stirring rate was set at 200rpm up to 500rpm related 

to the stages of process. The catalysts were added to the reaction mixture when the 

temperature reached 65 °C 

 

 

          

 

 

 

Figure 2 Esterification process diagram (Hui, 1996) 

In esterification process as described in Figure 2 has several constraints, 

such as inconstant yield of production target and lack of efficiency as there is a 

synthesizing reaction that requires high-energy use in the reactor to achieve desired 

temperature and time for the process (Mostafa 2013). In this process also has several 

disturbance that involved in the reaction such as variance of purity level of glycerol 

and oleic acid as a raw material. Another disturbance was from environment of the 

system such as outside temperature variance of the reactor. The photo of reactor in 

laboratory experiments was shown in Appendix 1. 

The yield of esterification process as focused in this research was measured 

by the transmittance of infrared sensors with several wavelength based on Planck 

theorem that the transmittance level in each frequency has related in energy 

measurement of molecules. This sensor was selected within several mid IR 

wavelength spectrum which has high difference of transmittance level (peak) and 

the measurement was calibrated by compared the data transmittance using Fourier 
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Modeling 

and 

Simulation 

1.Analyzing esterification production system with 

BPMN diagram

2. Applied real- time simulation to optimize production of esterified 

glycerol 

1. Design formulation using Infrared sensors for 

real- time measurement

2.  Develop computational Intelligence for classification methods   

1.Analyze and design the dynamic condition process of oleic acid  

esterification with glycerol in detail

2. Develop gradient measurement for selection the sensors followed 

by Support Vector Machine (SVM) for data to determine the 

classification state condition in control combined with adaptive 

selection method applied in the microcontroller.

 Integration of real-time monitoring and control with state, 

supported with Pillar k-means adaptive clustering 

Transform Infrared Spectroscopy (FTIR) and Gas Chromatography–Mass 

Spectrometry (GCMS) (Kartnaller et al. 2016). 

 

Research Framework 

 

The research framework was designed in a parallel form to solve the 

problem which begins from a real-time simulation model of self-optimization and 

then developing in real-time monitoring. Finally, optimization in real-time with an 

adaptive sensor selection to determine the control state. In this research, 

microcontroller ATmega8535 (Atmel 2005) and Arduino (Ivrea 2005) were used 

as a hardware of data acquisition. For the tools such as BPMN 2.0 (SAP 2013), 

Sigmaplot 12.5 (Cranes 2011), Arena (Rockwell 2011), Orange Python (Biolab 

2015) and Stateflow (Mathworks 2014) were used in software for process 

modeling, create exact graphs, discrete simulation and data processing.  

In this research, generally, experimental data from laboratory scale practices 

of reaction were used to generate several real-time optimization models of 

esterification production using clustering, classification, and adaptive selection 

sensor. The detail of general research framework and method in each chapter are 

presented in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 General research framework 
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Location of Research and Time 

 

This research was started from June 2014 up to May 2016. The sensors and 

detectors were tested and assembled in Laboratory of Electronic Material and 

Physics in Department of Physics Bogor Agricultural University. For data analysis 

and computational process was run in Laboratory of Computational Research 

Department of Agroindustrial Technology Bogor Agricultural University. We run 

several reactions and variation conditions for esterification process that were tested 

in laboratories of Surfactant Bioenergy Research Center (SBRC) at Bogor 

Agricultural University.  

 

Method of Collecting Data 

 

Data collection was done based on the needs of the developed model. In this 

research types of data can be either primary data or secondary data. Primary data 

was obtained from mid-IR sensors that works in real-time and laboratory assay test 

such as Fourier Transform Infra-Red (FTIR) and Gas Chromatography–Mass 

Spectrometry (GCMS). Secondary data in this study were collected from books, 

reports, and scientific publications and other sources of information. 

 



3 A REAL-TIME SIMULATION MODEL OF PRODUCTION 

OF GLYCEROL ESTERIFICATION WITH SELF- 

OPTIMIZATION 
 

Abstract 
 

The quality and capacity of Glycerol Monooleate (GMO) production are the factors 

that need to monitor and control. In this model of Real-Time Simulation (RTS), we 

deployed BPMN diagram to analyze and design the requirement and used data 

acquisition system with the real-time sensor. We used real-time data acquisition by 

optical sensors to acquire several quality parameters such as viscosity, pH, purity 

and density which was interfaced to an SQL database. The model of self-

optimization for quality surveillance was based on previous work. As a result of 

RTS, showed that the evaluation of the system performance was worked to optimize 

a range of parameter esterification glycerol with oleic acid in producing Glycerol 

Monooleate (GMO) such as optimized process time to 2.888 hours and volume at 

28L for each batch. Compared to the traditional works was set to a fixed value 24L 

output only and 3.4 hours process time, that was increased about 16% volume of 

production for each batch and quality parameters that has closely related are 

density, viscosity and purity. In future work, it is recommended to accelerate the 

data processing including to re-structure the real-time monitoring sensor system. 

 

Introduction 
 

This chapter presents a newer concept of a Real-Time Simulation (RTS) 

compared to traditionally RTS that based on offline simulation and develop a model 

of the Glycerol Monooleate(GMO) production with Self-Optimization (SO) as a 

support for RTS. The integration of advanced data acquisition for optimization and 

RTS offers considerable potential for innovations in the field of conventional 

system. As compared to previous research by Sanchez in 1995, there is dynamically 

condition that related to performance which is offline simulation has problem in 

time delayed to catch that situation to get optimization for product quality and 

volume. To increase the system performance that affected by many internal or 

external factors in the process, such as quality of end product could use self-

optimization (Schmitt and Beaujean 2010). Using Self-optimization (SO) on 

process level, for example to calculate machine and process parameters according 

to changing outer conditions (Wagels and Schmitt 2012). In GMO process 

production there exist many possible scenarios how to solve these problems, but 

which of these scenarios is the best or the most optimal one? Is it possible to imagine 

how a change in the subsystem affects the entire system? As one a product of 

agroindustrial sector, this chapter was focus on glycerol as by-product of biodiesel, 

that the production of biodiesel is still increased, because of the government policy 

that regulates this GMO components for  mixed material for biodiesel had affected 

in increasing glycerol production rate. As a raw material, glycerol is an oil soluble 

food additive is also used as an ingredient in the production of chewing gum and 

ice cream (Soares et al. 2011). To produce esterified glycerol that using raw 

material from crude glycerol, there are many small medium manufacturing that 
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used conventional process and has many customer requirements to make Glycerol 

Monooleate (GMO). 

One of motivational point in optimization in GMO production is the quality 

of product may vary from the customer requirement. That condition would affect 

the unstable volume of production as this requirement observed and controlled 

manually.  Our research for the optimization and simulation in a real-time mode to 

monitor the flow of production and find the best production parameter with SO.   

The objective of these chapter is to construct a model that applied the RTS 

method supported with SO in implementation for Quality Control (QC). This 

method was explained with BPMN diagrams, using sensors and data acquisition 

system and finding the parameter of production that closely related to the quality 

target of the product and the volume of production GMO.  

 

Materials and Methods 

 

Production of Glycerol Monooleate 

The complexity of GMO production using reactor which is charged with 

materials glycerol that was explained in Chapter 1 at introduction, and reactor that 

put in a heater apparatus with working temperature maximum at 260°C were used. 

 

Business Process Modelling  

This stage is important because with this modeling we can analyze all the 

activities taken in production, especially in esterification process. We referred a 

Business Process (BP) as a collection of related and structured activities undertaken 

by one or more organizations or process in order to pursue some particular goal. 

Within an organization, a BP results in the provisioning of services or in the 

production of goods for internal or external stakeholders. Moreover, BPs are often 

interrelated since the execution of a BP often results in the activation of related BPs 

within the same or other organizations (Grooskopf et al. 2009). The primary goal 

of BPMN is to provide a standard notation readily understandable by all business 

stakeholders (Ryan et al. 2009), this modeling notation method has become an 

highly attractive topic both for industries and for the academy such as: the BPMN 

2.0 (Stephen and Conrad 2011). 

Quality Control (QC) 

In testing sample of GMO with FTIR, Fourier transform infrared 

spectroscopy (FTIR) is a technique which is used to obtain an infrared spectrum of 

absorption or emission of a solid, liquid or gas. An FTIR spectrometer 

simultaneously collects high spectral resolution data over a wide spectral range 

(Brault 1996). This confers a significant advantage over a dispersive spectrometer 

which measures intensity over a narrow range of wavelengths at a time. We set up 

QC system using mid-IR optical source and a detector for glycerol ester peaks for 

identification to meet the quality needed as the level of transmittance for the 

requirement in GMO production, as detailed specification of this requirement was 

provided in Business Process and Model Notation (BPMN) diagram as described 

in experimental results. 
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Self-Optimization 

In order to design a esterification process with optimum parameters. A 

combination of SO and simulation with real-time data acquisition method was 

proposed with IR sensors as shown in Figure 4, this illustration refer to specification 

of mid-IR sensor from Boston Electronics (Boston 2014) such as casing, optical 

lens and power wiring. The behavior of this optimization algorithms is random, so 

we had to perform many optimization experiments to identify the pure nature of. 

By considering the number of simulation experiments we can divide the number of 

simulation experiments as simulation experiment that simulation run of simulation 

model, Optimization experiment that performed with concrete optimization method 

setting to find the optimum of objective function and series that replication of 

optimization experiments with concrete optimization method setting. In this chapter 

the simulation and optimization experiment was used to find the optimum of the 

objective function. 

We specified the same conditions to satisfy each criteria in optimization 

such as termination criteria, search space for the global optimum. Optimization 

experiment method has the same parameters as another optimization method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

The optimization algorithms doing it by automatically as diagram in Figure 5 

that described the SO was operate as controller and process to set the controlled 

parameter adaptation of esterification to achieve the requirements of quality goal 

 

Figure 5 Self-optimization conceptual diagram 

(modified from Adelt 2009)  

 

 

 

 

 

 

 

 

Figure 4 Mid-IR optical source 
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Self-optimizing systems are defined as the interaction of contained elements 

and the recurring execution of the actions (Adelt et al. 2009), that has continuous 

analysis of the current situation, in this case is parameter selected of pure glycerol, 

determination of quality targets of GMO, production capacity, and adaptation of the 

system’s behavior to achieve these targets like temperature setting and the stirring 

speed of reactor.  

In this chapter we concerned for the SO formulation in general to find the 

minimization of process time with selected parameter as in Equation 1 

min (t)↔(P)                                                  (1) 

Where t∈ 𝑇  T is time needed in process and P is process with selected parameter 

of quality. For the more detailed formulation we described in Equation 3.                                  

      The development of a simulation of an actual system involves the creation 

of a conceptual model of the actual system to be simulated, which may be based on 

a set of rules, or a set of mathematical equations, or some other method of defining 

the state of the simulation and the way in which it changes with time. A simulation 

based on a discrete model establishes an initial state of the system and a future event 

queue with event timings. Thus, an event-based simulation in which time advances 

from event to event in a single software thread has been the basis of many popular 

discrete simulation languages, but, as parallel computing options increase, process 

-based simulation using parallel processors and multiple software threads has 

become the most popular approach. 

 

Real-Time Simulation 

Real time simulation is based on real-time systems that differ from 

traditional data processing systems, they are constrained by certain nonfunctional 

requirements (e.g. dependability and timing constraints or requirements). An 

efficient simulation of the real-time system requires a model that satisfies both 

simulation objectives and timing constraints (Bergero and Kofman 2010). There 

were several previous research developed in a structure and architecture for 

automatic simulation model generation. Theirs very detailed simulation models 

intended to be used for real-time simulation based shop floor control (Lee and 

Fishwick 2001). They identified two essential stages to be automated for automatic 

simulation model generation: System specification and the associated model 

construction (Law and Kelton 2000). In this work, a proposed methodology for 

building an Arena simulation model from a resource model as seen in Figure 6. This 

was made possible, the Arena simulation software is supported by Visual Basic 

Application (VBA) coding, 

 With this application which enables application integration and automation 

we deploy the simulation model. Then, undertook the development of efficiently 

model real-time systems to satisfy given simulation objectives and to achieve 

arbitrary timing requirements and used SQL for running the simulation.  

According as the method of this research, we developed the simulation of 

GMO production that performed the RTS concept with discrete event computer 

simulation program. The model deployed in ARENA Version 12 (Rockwell Ltd 

2011) with the schema in Figure 6 that has block of module such as create entities, 

VBA coding, esterification process, quality control and database that built input 

measurement with mid-IR sensor. The data was collected to database after the 

system of process has reached steady state condition  
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Figure 6 Real-time simulation model of GMO production using discrete simulation 

 

As seen in above simulation diagram. To provide data transmission 

smoothness, a new system has several block function such as front end, database, 

microcontroller and sensors to operate the system. We designed the system block 

for processing signal from control panel that arrange the flow of data from sensors 

to interface with an SQL connection for database building. In this work we deployed 

MySQL (Oracle 2014) as data access and repository media by using 

microcontroller. 

 

 

 

 

 

In this chapter as shown in Figure 7, we implemented a real time simulation 

that need to support by sensors block to do the simulation with little time delay with 

theirs respectively as special function of microcontroller and front end to built the 

database in real time that needed in simulation.  

Next, we provided relevant tables designed in SQL engine and it is related 

to simulation as in Table 1.  

Table 1 List of data type for SQL database 

Field Data Type Related to 

simulation 

Time Time Parameter 

Sensor 1.2 µm Numeric Esterification 

Sensor 3.4 µm Numeric Esterification 

Sensor 5.5 µm Numeric Esterification 

pH Sensor Numeric Quality 

 Viscosity Sensor Numeric Quality 

Temperature Numeric Variable 

Stirring speed Numeric Variable 

 

 

Figure 7 System block diagram for real-time data acquisition 
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In this new concept, analog signal from sensors was converted to digital as 

interfaced to database using microcontroller in less than 2 seconds for each data 

stream and RTS works based on simulation running in discrete simulation software 

using the data from database. 

Feature Selection 

      Feature selection was used in this research because there is many attributes 

to measure for controlled the quality. To select the parameter that closely related 

we used Relief (Reliable Elimination of Features) method. This experiment used 

two class which are good and not good measurement. The result of weights of 

design elements of Relief a weight of the ith feature is then updated, the 

mathematical model was stated by Kira and Rendell in 1992 is: 

𝑊𝑖 = 𝑊𝑖 + (𝑥𝑖 − 𝑁𝑀𝑖(𝑥))2 − (𝑥𝑖 − 𝑁𝐻𝑖(𝑥))2    (2) 

where 𝑊𝑖= Weighted vector of ith attributes, 𝑥𝑖= ith feature vector, 𝑁𝑀𝑖(𝑥)=  ith the 

closest different-class instance called as near miss where the later class (ith+1)in the 

record is differed from the from the ith record, 𝑁𝐻𝑖(𝑥)= ith the closest same-class 

instance called as near hit where the later class (ith+1) is similar from the ith record. 

That formulation we used is to find the parameter closely related to determined 

quality of GMO (Equation 2). We used them to reduce unimportant features that 

result for a more efficient computation and sensor task.  

Optimization formula 

 We concerned for is the SO formulation for optimization that implemented 

Relief algorithm for attribute selection and search the minimization of time process 

to increase the volume of production, which is topR→R<<N, N is number of all 

attribute. We defined formulated completely as: 
arg 𝑚𝑖𝑛
𝑡 → 𝑇

𝑓(𝑡) = {𝑡|𝑡 ∈ 𝑇 ∧ 𝑅 ≤ 𝑁 ∧ 𝑡𝑜𝑝𝑅 ≪ 𝑁 ∧ 𝑓(𝑡)𝑅 < 𝑓(𝑡)}               (3)                                      

where T={t1,t2,......tN} 

Next, in this research we found the minimum of process time by doing several of 

replications in real time discrete simulation. To increase the precision of simulation 

result, 20 times of replications was run in the real time simulation.  

Verification 

 For the verification stages we set the logical boundaries as acceptance test 

and bias allowable for the parameter of time which is between 2.5 to 3.5 hours and 

for volume of production which is between 23-30L. 

Experimental Results 
 

Parameter Selection 

In order to propose some updates to improve the reliability of the probability 

approximation and make it robust to incomplete data, and generalizing it to two-

class quality problems which are yes and no pass. We collected the data as needed 

for Relief method the features for attributes A (a1,a2,….ak) from synthetic 30 



13 

 

 
 

datasets as listed in Appendix 5 completely. And some sample was tested by the set 

of quality condition of GMO as shown partially in Table 2.  

 

 

Table 2 List of attribute of parameter for quality control  

% 

Water 

(x1) 

Viscosity 

(poise) 

(x2) 

Free 

Glycerin 

(%) 

(x3) 

pH 

(x4) 

Purity 

(%) 

(x5) 

Rel. 

Density 

(x6) 

Quality 

Pass 

 

0.5 0.0548 3 4 72 1.01 NO 

0.1 0.0543 1 4 63 0.98 NO 

0.4 0.0549 3 3 88 1 YES 

0.4 0.0543 2 3 71 1.01 NO 

0.2 0.0526 3 4 83 0.96 YES 

0.2 0.0519 2 4 62 1.02 NO 

0.1 0.0513 3 5 78 0.96 YES 
Source: (Pardi 2005;Prasetyo 2012) 

 

 The quality that pass or not pass was based on research from Pardi (2005) 

and Prasetyo (2012) that we define in Table 2 in condition as 

 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑝𝑎𝑠𝑠 = {
𝑌𝑒𝑠(𝑥1 < 0.5; 𝑥2 > 0.050; 𝑥3 ≤ 3; 3 ≤ 𝑥4 ≤ 5; 𝑥5 > 77; 0.96 ≤ 𝑥6 ≤ 1

𝑁𝑜(𝑥1 < 0.5; 𝑥2 < 0.050; 𝑥3 ≥ 3; 6 ≤ 𝑥4 ≤ 7; 𝑥5 < 77; 1.01 ≤ 𝑥6 ≤ 1.5
       (4) 

 

 

Figure 8 Attribute weight for esterification parameter from training of feature 

selection based on 30 synthetic data 

As an output in Figure 8 has shown the attribute weight Wi for each 

parameter. The selection of attribute weighted by using Relief method found that 

the parameters with dominant weight in sequent are density, viscosity and purity.  
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Business Process Modeling of Esterification with Glycerol 

Based on the research from Lin et al. (2002) was stated that BPM supports 

Business Process (BP) experts that providing methods, techniques, and software to 

model, implement, execute and to optimize BPs which involve humans, software 

applications, documents and other sources of information. As a widespread 

adoption of the Business Processing Modelling and Notation (BPMN) also helps 

unify the expression of basic business process concepts. In this chapter the 

complexity decomposition of esterification process control was illustrated by using 

diagram of BPMN 2.0 (SAP 2013) as in Figure 9A as a swimlane of simulation 

event generator and 9B as swimlane of production. As this analysis, we explained 

the low-level tasking in the system and simulation that can improve the efficiency 

and effectiveness of the system (Gunasekaran and Kubo 2002) in order to produce 

the targeted quality of GMO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A)                                                                                      (B) 

Figure 9 BPMN of esterification process detailed for (A) swimlane of simulation 

event generator and (B) swimlane of production 

In addition in Figure 9A we defined a parameter analysis block which is 

required to simulate the esterification process and parameter selection as related by 

the purity of glycerol as raw material obtained in variations between 80 to 90% due 

to the presence of impurities such as remaining catalyst, water, soaps, salts and 

esters formed during the reaction (Min and Lee 2011). For the parameter of density 

and viscosity has several variations that need to analyze (Pardi 2005). Parameter 

analysis was set in condition related to pass in QC. In production swimlane as a 

End_ Simulation 

SIMULATION 

Event Generator 

Parameter Selection 

Parameter Analysis 

Save Parameter Iterative 

Start_Simulation 

If production 
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connection from event generator that appointed where esterification process has 

several task such as mixing, setting of stirrer speed and setting temperature that was 

illustrated in Figure 9B. Finally, with BPMN diagrams we was deployed all the 

process of production by reaction of esterification that involving many parameters 

affected quality of the end product clearly. as well as advanced process concepts 

(e.g., exception handling, transaction compensation).  

 

Output of Real Time Discrete Simulation 

    For data acquisition, a data measurement was interfaced with MySQL and 

inputs from optical sensors that collected after achieving steady state condition in 

process production. Then, in Figure 10 the performance in existing system was run 

in 20 replications and shown the result in Key Performance Indicator (KPI) as 

number out as represented the volume of production in 24L and average 

esterification time in 3.4007 hours.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 10 Output of simulation result for 6 parameters of QC 

 From Figure 10 as an output of real time simulation result also described 

another parameter such as time unit, half width, minimum average, maximum 

average, minimum value and maximum value. Those output was important to 

measure the performance of the system. 

In addition in Figure 11 we showed the optimized proposed system using 

SO compared to existing system, that the KPI represented volume of production 

was increased to 28L and decreased in average esterification process time to 2.887 

hours with the differences 0.6 hours as equal to 36 minutes. And also described also 

described another parameter such as time unit, half width, minimum average, 

maximum average, minimum value and maximum value. Those output was 

important to measure the performance of the system. 
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Figure 11 Output of simulation result for 3 parameters of QC 

With real-time simulation we identified the effect of each process in 

esterification and quality control. Next, the simulation was run in 20 replications 

and compared to existing system that operated by knowledge to set the variable of 

process and monitored manually by operator as described, we found in the 

simulation result from optimized system has increased in number out parameter in 

Key Performance Indicators.  

Table 3 Comparison of existing and real-time simulation with SO 

 

 

 

As we compared in Table 3, to find the optimal output of SO  for the best 

parameter in production of esterification glycerol that previously selected with 

Relief to find the related quality parameters such as density, viscosity and purity, 

the esterification time was reduced from 3.4 hours to 2.888 hours, volume of 

production was increased from 24L to 28L, and quality parameters that closely 

related are density, viscosity and quality. 

Discussion 

In esterification process, to select the parameter that closely related to self-

optimization model of GMO production we used Relief method that compared the 

attribute weighted from each parameter by collected the data from requirements of 

GMO specification. In comparison to the previous research (Pardi 2005, Prasetyo 

2012) with many parameters was used. We found several parameters that affected 

the quality of GMO such as density, viscosity and purity with R equal to 3. We have 

Parameters Existing SO 

Esterification time (hours) 3.4000 2.888 

Volume (L) 24 28 

Quality Parameters All density, viscosity and 

purity 
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not run the experiments for R (selected attribute) more than 3 because as in training 

result of weighted attribute the weight number for the others than 3 that we have 

selected their weight are very small. As implementation of SO those three 

parameters were identified with sensors.   

In comparison to previous research from Wagels and Schmitt (2012), that 

SO had increased the productivity of shaft production within range of 4.64-7.23%. 

This current real-time discrete simulation was to evaluate the implementation of 

proposed system. As the result in simulation report in Figure 10 and Figure 11, we 

found that a difference in time for processing, output of production had been proven 

and increased the volume of production up to 16% or from 24L to 28L as a 

simulation overview output results.  

According to the result of this chapter, the difference was related to the 

parameter that involved in QC for esterification. The advantages of this chapter by 

optimizing these three parameters which was defined with SO. And by real-time 

discrete simulation, we can simulate the efficiency improvement of esterification 

process and increase the volume of production compared to the existing system as 

shown in Table 3.  

As a result of successfully implementation SO in esterification process, in 

the next chapter presented the development of real-time optimization based on real-

time monitoring system and computational intelligence. This new optimization also 

used data acquisition and sensors system to increase measurement of the parameter 

related to esterification process. 

Conclusion 

The modeling of a real-time simulation model from process of glycerol 

esterification with self-optimization was contributed to support the production 

system of GMO. The analysis of the model was described for lower level process 

detailed in BPMN 2.0 diagram. With those diagrams, we found the relationship and 

interaction between stakeholders and clearly used for the simulation to improve the 

performance system. Verification of the model ensured implementation of the 

conceptual model. As a result of zero error checking and the RTS run as well. The 

experiments showed that the evaluation of the proposed parameter such as process 

time to 2.88 hours and volume at 28L, that was increased about 16% for each batch 

and quality parameters that has closely related are density, viscosity and purity. 

Compared with the previous works set to 24L output only with all quality 

parameters were used.  

In future work, it is recommended to accelerate the whole process including 

to re-structure the real-time data acquisition system. According this research, there 

is has some problems in monitoring the data to determine the status of the process 

in real time, for the future research it is interesting to applied the computational 

intelligence method such as classification to determine the status of process stages 

more clearly. 



4 REAL TIME MONITORING GLYCEROL 

ESTERIFICATION PROCESS WITH MID-IR SENSORS 

USING SUPPORT VECTOR MACHINE CLASSIFICATION 
 

Abstract 
 

The commercial synthesis of fatty acid esters of glycerol has important aspect, as it 

plays role in other derivative production varieties. This research aims to construct 

the monitoring system for faster identification of esterification status and increase 

the efficiency of energy used for production used computational intelligence 

approach. The monitoring systems are based on the measurement parameters from 

two sources  mid-IR 3.4 µm and 5.5 µm and two detectors that connected using the 

data acquisition system with ATmega8535 that connected to computer database via 

USB 2.0 and classifying the status of esterification using the Support Vector 

Machine (SVM) classifier. The purpose of SVM method is to classify the variations 

of parameter inputs from the mid-IR sensors in real time monitoring that connected 

with a microcontroller. In this research, three esterification statuses as initialization, 

work on process and finishing were divided for process monitoring in the 

bioreactor. The construction of classification based on SVM deployed in Orange  

software. In the application of esterification monitoring, the influence of various 

parameters such as temperature set in the reactor has relation to the process time 

needed. By monitoring this system statuses in every minute, we obtained one of the 

optimum process that was set in 210oC is 2 hours. 
 

Introduction 
 

As explained in Chapter 2 of this dissertation,  the commercial synthesis of 

fatty acid esters of glycerol was carried out by two different way namely direct 

esterification of fatty acid with the glycerol and catalysis by a homogenous acid 

(Isabel et al. 2003). In Indonesia, synthesis by direct esterification of fatty acid is 

widely used in the esterification process of glycerol because this process is simple 

and feasible in the batch production system (Pardi 2005). Several factors affecting 

the conversion efficiency of esterification process are a molar ratio of reactant, 

amount and type of catalyst, reaction temperature and stirring speed in reactor, and 

duration of the process (Mostafa and Maher 2013).  

In the previous chapter has shown the major factors that should be 

controlled are reaction time, temperature and stirring speed, ideally supported by 

real time monitoring. The real-time monitoring also has a development in 

application as development by using microcontroller platform in low cost data 

collection and laboratory experiments which are designed and constructed using 

open source hardware and software (Barber et al. 2013; Ali et al. 2016) and also 

application in batch bioresource production as related to monitor the parameter of 

process (Lu et al. 2016).   

A current method for determination of esterification product is sampling, 

which needs high cost and time. As in this chapter focused on determine the 

esterification status in real time, direct and close online monitoring of the product 

and critical components are highly desirable by monitoring the esterification 
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process that related to control variable as the temperature and process time needed. 

Determination of the esterification reaction is highly desirable for esterified 

glycerol product in order to increase the efficiency energy and the cost of 

production. In this chapter, optical measurement techniques that are promising 

candidates in spectral region i.e. multi-channel NDIR (non-diffractive infrared) 

absorption or IR spectroscopy was used. The later method is also used in 

laboratories, thus allowing better correlation of online data and laboratory results 

with data acquisition interfaced by the database to the computer. SVM method used 

to find the correlation is used for calibration parameter in online measurement 

sensors, especially to identify the esterification status. The position of sensors from 

Sinelli et al. in 2004. demonstrated a set-up with detector array combined with the 

gradient filter to avoid the need for movable parts was inspired and applied. Wiesent 

et al. (2011) presented a system with an infrared source, a fluid cell consisting of 

two sapphire windows and a quadruple infrared detector equipped with different 

filter windows for analysis of phosphate ester.  

As the objective of this chapter is to develop a system for the identification 

of esterification status using mid-IR sources, thermopile detectors, and data 

acquisition system using classification method, as well as to find the optimize  

variable related to temperature set in the reactor and the duration of the 

esterification process. In first section, we briefly explain the materials and methods. 

Next, we briefly described the calibration. Furthermore, explaination about the 

concept of classifying esterification status with SVM. Finally, we discussed the 

conclusion. 

Materials and Methods 

Materials 

In this research, for the raw material and reaction we were used as in Chapter 

2. Therefore, the internal mass transfer resistances were considered negligible in 

this study. The pseudo-homogeneous kinetic model was used to propose the 

reaction mechanism. The reaction rate equation was defined from Ilgen (2014) as 

-rA=k1CACB-k-1CCCD                                     (5)                                               

where CA, CB, CC and CD present the concentrations of oleic acid, glycerol, glycerol 

monooleate and water, respectively, and k1 and k−1 are the forward and reverse 

reaction rate constants, respectively. Since the excessive presence of glycerol, the 

reaction was considered as reversible and the concentration of glycerol was 

considered as constant. The reaction rate equation was simplified to pseudo-

homogeneous first order equation: 

−𝑟𝐶 =
𝑑𝐶𝐶

𝑑𝑡
= 𝑘𝐶𝐶                                         (6) 

                                                       where k=k1CC. 

When CA was expressed as a function of conversion (X) which X=[0,1] and taking 

natural logarithm, the following equation was obtained: 

− ln(1 − 𝑋) = 𝑘𝑡                                                 (7) 

The −ln(1 − X) is related measurement of reaction conditions in conversion. The 

kinetic data were well fitted with the pseudo-homogeneous first order equation with 

high regression coefficients (R2 = 0.99). The pseudo-first order rate with respect to 

the oleic acid for esterification was also proposed by other researchers (e.g Dokic 

et al. 2013). 
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Equipment 

Esterification reactions were carried out in a laboratory-built apparatus as 

explained in previous chapter. The esterification reaction was carried out under 

closed  system, and temperature of the reactor was controlled using a heater plate 

(controlled by an internal thermostat) is shown in Figure 12 and monitored by using 

IR sensors (Soenandi and Djatna 2014) that integrate with microcontroller 

ATmega8535  and connected with serial to USB cable with prolific chipset to run 

data acquisition. All the reactants (oleic acids, pure glycerol, and catalyst) were 

pondered and poured into the reactor. Then, the temperature was increased by 

adjusting the thermostat. The magnetic stirrer was allowed to operate after 5-10 min 

(to heat up the mixture).  After passing the targeted reaction time, the reactor was 

removed from the hot plate. The reaction mixture was cooled down to the ambient 

temperature by immersing it into the water bath. Samples were withdrawn from the 

reaction mixture for further analysis. 

 

 
 

 

 

 

Variation in Temperature and Process Time 

We run several reactions test and varied condition, which were tested in the 

laboratory of Surfactant Bioenergy Research Center (SBRC) at IPB Baranangsiang 

Bogor. In order to get varied conditions of the temperature and reaction time. we 

monitor the proces in temperature  120oC, 180 oC and 210oC. On the other hand, the 

process time was measured in 40, 78 and 120 minutes out of environmental room 

temperature consideration. 

 

Sensor System 
In order to support the monitoring process, a commercial infrared mid-IR 

was set as source as the original growth of narrow gap semiconductor alloys onto 

n+-InAs substrate, optical coupling through the use of chalcogenide glasses and Si 

lenses with an antireflection coating (Boston Electronic 2014).  

                

 

 

 

 

                                

Figure 13 Mid-IR setting position 

 

Figure 12 Part of apparatus set in laboratory experiment 
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Three types mid-IR sensors of 3.4 micron LED-34SR full thread body, 5.5 

micron LED-55SR full thread body and 7 micron OPLED 70 full thread body, also 

the thermopile detectors from Heimann HTIA Dx-Tx used for detecting the sample 

as reach steady state and to record signal amplitude with a good signal-to-noise ratio 

and position layout of the sensor and detector that covered with 2 mm plastic box 

to isulate the detector from environment rays that cause noises is in Figure 13. The 

sensor has Cockcroft–Walton (CW) where as a voltage multiplier converts AC or 

pulsing DC electrical power from lower voltage level to a higher DC voltage level. 

To measure the process in the reactor, we used sensor 3.4µm that has specification 

as peak wavelength, pulse power and Cockcroft–Walton (CW) voltage in Table 4 

 

Table 4 Specification of mid-IR LED34Sr 

 

Properties Unit Value 

Peak wavelength µm 3,4±0.05 

Pulse Power mW 0.25-0.35 

CW Voltage V Drive Current 0.2A 0.26-0.29 

 

And for sensor 5.5µm and 7 µm specification as peak wavelength, pulse power 

and drive current of Cockcroft–Walton (CW) voltage in Table 5 until Table 6  

 

Table 5 Specification of mid-IR LED55Sr 

 

Properties Unit Value 

Peak wavelength µm 5,4-5.5 

Pulse Power µW 5-7 

CW Voltage V Drive Current 0.2A 1.5÷2.5 

 

 

Table 6 Specification of mid-IR OPLED70 

 

Properties Unit Value 

Peak wavelength µm 6,5-7.0 

Pulse Power µW 5-7 

CW Voltage V Drive Current 0.2A 1.5-2.5 

Data Acquisition 

To ensure the data parameters get collected from the sensors, the system 

was interfaced with a database such as MySQL.  
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Figure 14 Proposed system block diagram for sensors and microcontroller  
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As shown in Figure 14, we built the data acquisition system by using three 

type of sensors as 3.4µm, 5.5 µm and temperature connected to microcontroller 

ATmega8535 with 10 bit Analog to Digital Converter (ADC) for convert analog 

signal to digital. Next, attached with Universal Serial Bus (USB) 2.0 prolific to 

connect the data streaming in real time to the desktop computer. Next, the 

calibration of the sensors was executed and the output was processed with SVM 

method in a personal computer (Kwok 1999). 

Calibration 

To ensure the precision esterification measurement, this system calibrated 

by 3 step method: testing with the blank sample, full closed sample (using a sheet 

of paper) and compared the spectrum FTIR of esterified glycerol with parameter 

210oC and 120 minutes process as in Appendix 11 FTIR test comparison for non 

esterified and esterified .  

Table 7 Blank sample for sensors calibration 

 

Time (Second) Digital Output Number Transmittance Calibration 

 5.5µm 3.4µm 5.5µm 3.4µm 

1 205 258 100 100 

2 209 260 100 100 

3 208 258 100 100 

4 210 257 100 100 

5 207 258 100 100 

6 208 256 100 100 

7 209 255 100 100 

8 207 259 100 100 

9 208 257 100 100 

10 206 258 100 100 

Average 208 258 100 100 
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Table 8 Full closed sample for sensors calibration  

 

Time (Second) Digital Output Number Transmittance Calibration 

 5.5µm 3.4µm 5.5µm 3.4µm 

1 178 203 0 0 

2 178 203 0 0 

3 182 201 0 0 

4 181 202 0 0 

5 182 203 0 0 

6 182 201 0 0 

7 182 201 0 0 

8 181 202 0 0 

9 178 201 0 0 

10 179 201 0 0 

Average 180 202 0 0 

 

After we get the average value for the two condition (blank sample and closed 

sample/paper sheet) to describe transmittance upper and lower limit value in             

10 seconds from the sensor as shown in Table 7 and Table 8. We collected the 

transmittance in 10 seconds, because in 10 seconds we assumed that all the 

fluctuations has well measured, for the next step to find the interpolation for this 

identification system we used formula as in Equation 8.  

 

 

                 Transmittance (%)  =                            (8) 

   

where:                                

                                            = bit number of digital output; 
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  =  average bit number used in closed sample; 
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ib
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n


 = average bit number used in blank sample. 

Sensor Selection 

In this work, to analyze the sensors that closely related to esterification 

forming parameter, we used feature selection Reliable Elimination of Features 

(Relief) algorithm as explained in detail in Chapter 3 page 13. We have collected 
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30 datasets and measured with sensors to get three classification as represented of 

three groups of esterification status  

Support Vector Machine (SVM) 

Support Vector Machine (SVM) was first heard in 1992, introduced by 

Boser, Guyon, and Vapnik. Support vector machines (SVMs) are a set of related 

supervised learning methods used for classification and regression (Vapnik et al. 

1997). SVM is a useful technique for data classification and supported of real-time 

data processing. For this type of SVM (Vapnik et al. 1997), several formulations of 

training involves the minimization of the error function as shown in Equation 9 





N

i

i

T C
12

1
                                                         (9) 

subject to the constraints as: 

     ii

T

i bxy   1))((                                               (10) 

and Nii ,.....,1,0                                              (11) 

where C is the capacity constant, ω is the vector of coefficients, b is a constant, and 

  in Equation 11 represents parameters for handling non-separable data. Then,   the 

index i labels the N training cases. Note that           represents the class labels and              

x={xi | i=1,…,n} xi represent the input of IR sensors used for n is time length in 

measurement space. For the process to find cluster the kernel  is used to transform 

data from the input (independent) to the feature space. It should be noted that the 

larger the C, the more the error is penalized. Thus, C should be chosen with care to 

avoid over-fitting for the cluster. A classification task like esterification status 

process usually involves with training and testing data, which consist of some data 

instances. Each instance in the training set contains one target values and several 

attributes, which tested in the laboratory using sample process in each, attribute. As 

an output, the goal of SVM is to produce a model, which predicts target value of 

data instances in the testing set which is given only the attributes (Cristianini and 

Taylor 2000), in this research, the output of target value is esterification status. 

 

ROC Performance Classifier 

A receiver operating characteristic (ROC), or ROC curve, is a graphical 

plot that illustrates the performance of a binary classifier system as its 

discrimination threshold is varied. The curve is created by plotting the true positive 

rate (TPR) against the false positive rate (FPR) at various threshold settings. The 

true-positive rate is also known as sensitivity, or recall in machine learning. The 

false-positive rate is also known as the fall-out and can be calculated as                         

(1 - specificity) (Hernandez and Orallo 2013). In test learner evaluation there are 

three parameters such as Classification Accuracy(CA), Sensitivity (Sens) and 

Specificity (Spec). CA is a percentage of a number of correct predictions from all 

prediction made. Sens is measuring the proportion of positives that are correctly 

https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/Sensitivity_(tests)
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.29
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Information_retrieval#Fall-out
https://en.wikipedia.org/wiki/Specificity_(tests)
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identified and Spec has measured the proportion of negatives that are correctly 

identified. Sensitivity, specificity, and accuracy are described in terms of TP, TN, 

FN and FP.Sensitivity = TP/(TP + FN) = (Number of true positive assessment) 

/(Number of all positive assessment), Specificity = TN/(TN + FP) = (Number of 

true negative assessment)/(Number of all negative assessment), Accuracy = (TN + 

TP)/(TN+TP+FN+FP) = (Number of correct assessments) /Number of all 

assessments). Finally, ROC curve is a graphic presentation of the relationship 

between both sensitivity and specificity and it helps to decide the optimal model 

through determining the best threshold for the diagnostic test. 

Experimental Results 

Feature Selection for Sensor   

As the result of attribute weighted in Relief method with 30 datasets 

(Appendix 5) that classfied by sensors measurement and FTIR test as shown in 

Figure 15, the sensors that has closely related with measurement of esterification 

are 3.4µm and 5.5µm. 

 

 

 

 

 

 

Note: Sensor 1(x1): 3.4µm, Sensor 2(x2): 5.5µm and Sensor 3(x3): 7µm 

Figure 15 Attribute weight of sensors from Relief method 

 

During laboratory works, we collected experimental process using data 

acquisition with temperature between 120oC to 210oC in 160 minutes process time. 

The plot of data acquisition in graphical was described in Figure 16. With this data 

acquisition system, we can get real time data plotted in interval of three seconds 

during 160 minutes and classified with SVM method. 

 

 

 

 

 

 

 

 

 

 

Figure 16 Real-time transmittance measurement from 3.4µm(■) and 5.5µm(▲) 

sensors 

 

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180

Tr
an

sm
it

ta
n

ce
 (

%
)

Time (minutes)



26 

 

In our research, we used SVM method to classify the input parameter identified by 

the sensor as a value of transmittance parameter and the accuracy of this model was 

tested by using ROC analysis. 

 

Esterification Classification with SVM 

For the data acquisition in this research, we used online data measurement 

interfaced with SQL database and identified the parameter inputs by using optical 

sensors mid-IR that attached in the bioreactor. The input database was collected and 

clustered into esterification status in real-time with SVM method. Next, with 

computer data mining software application Orange version 2.7 (Biolab 2015)  to 

deploy a knowledge flow model  for the classification step as in Figure 17.  

 

 

 

 

 

 

 

 

 

 

 

Figure 17 A knowledge flow scheme of SVM method 

 

In this  block of a knowledge flow was started from data selection for 

attributes from mid-IR. Next, the block of SVM method was trained with 100 data 

and tested by processing the data file with 150 samples, 3 attributes (sensor 3.4µm, 

sensor 5.5µm and temperature) and Classification Discrete-Class with 3 values 

(initialization, work on process and finishing). This flow run in C-SVM for C=1.00 

and Sigmoid Kernel typed was used. 

 

ROC Analysis 

In case of measurement of SVM classifier, we used test learners block on   

5 number folds sampling Cross-validation. The evaluation result was displayed with 

Classification Accuracy rate of 95,58%, sensitivity level at 97.81% and specificity 

rate of 95.54%. Another test method this classification was tested by ROC curve 

with a graphical plot on each predicted class. As in this research there are                         

three esterification status as initialization (predicted class 1), work on process 

(predicted class 2), and finishing (predicted class 3). These graphs plotted between 

FP (False Positive) rate and TP (True Positive) rate that illustrate the performance 

of a classifier system as its discrimination threshold is varied. The curve generated 

by Orange Software data mining (Biolab 2015) which was shown by plotting the 

true positive rate against the false positive rate at various threshold settings. The 

closer the points on the ROC curve to the diagonal, the less accurate the test is. As 

a some example result of classification that shown in Table 9 and more complete 

data listed in Appendix 7 for data record using two sensors in real time. 

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Binary_classifier
http://en.wikipedia.org/wiki/True_positive
http://en.wikipedia.org/wiki/False_positive
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Figure 20 ROC analysis curve 

 

 

 

 

 

 

 

 

Figure 18 Classification curves of ROC analysis 

 

From the three predicted classes in Figure 18, we found that the classifying 

performance of SVM was excellent as the interpretation of ROC curves of 3 

predicted class is similar to a single point in the ROC space, the closer the point on 

the ROC curve to the ideal coordinate in upper left, the more accurate the test is 

 

Table 9 Example of identification by sensors in transmittance measurement with 

SVM classifications 

 

Sensor 1(X1) 

(Transmitance) 

Sensor 2(X2) 

(Transmitance) 

Time 

(minutes) 

Temperature 

(oC) 

Esterification Status 

from Classification 

With SVM( ) 

20 34 40 120 Initialization 

46 50 78 180 Work On Process 

75 84 120 210 Finishing 

In Table 9 we have example of result that in measurement from Sensor 1 

(3.4µm) has measured the transmittance level of 20 and Sensor 2 (5.5µm) has 

measured the transmittance level of 34 in process time 40 minutes and temperature 

was 120 oC, by SVM this set of data sample was classified in esterification status 

of initialization. Next, we have another example of result that in measurement from 

Sensor 1 (3.4µm) has measured the transmittance level of 46 and Sensor 2 (5.5µm) 

has measured the transmittance level of 50 in process time 78 minutes and 

temperature was 180oC, by SVM this set of data sample was classified in 

esterification status of work on process. And finally for the last set of data was 

classified in esterification status of finishing. 

 In this result has revealed that by classification of the esterification we can  

monitor the esterification time more precisely and yields of esterification also 

increased up to a higher conversion. 
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Discussion 

In this chapter the real-time monitoring of esterification process with 

sensors was supported with classification method is presented to monitor  the phase 

of esterification process because to identify the esterification process is needed. It 

is important  to develop a system for the identification of esterification status using 

LED mid-IR sources, thermopile detectors, and data acquisition, as well as to find 

the variable condition related to temperature in the reactor and the duration of the 

esterification process in real time condition.  

In comparison to the previous research from Sinelli et al. (2004) that we 

also set a sensor position in paralel. As in step for real time monitoring was started 

from the output value from sensors in analog signal that converted in data 

acquisition system to defined the state of esterification by classification. In 

comparison from Lu et al. (2016) that not using classification for monitoring, in 

this chapter the real time monitoring was used  a classification method after the 

database was built, and this classification method was deployed in 3 states to 

simplify the identification of esterification stages. In comparison to Cristianini 

(2000) that have ratio 1:10 for calibration and data sets, we used 10 sample data for 

calibration and 300 data training sets.  

We obtained the result as shown in Figure 18 for the ROC curved with            

3 predicted class using C=1.00 was good in classification because the best possible 

prediction method would have yield a point in the upper left corner or coordinate 

(0,1) of the ROC space, representing 100% sensitivity (no false negatives) and 

100% specificity (no false positives) and as shown the points are near the upper left 

corner. The parameter as temperature and time in the process had major effects on 

the conversion of the esterification. The obtained results showed that by increasing 

the reaction temperature, the reaction conversion also increased rapidly and after     

2 hours, the esterification reached a well-formed esterification status. 

Therefore, to test the classification, several various of esterification reaction 

that was carried out within a temperature range between 120°C to 210°C (maximum 

heater temperature) was used. The results revealed that by increasing the 

esterification time, the esterification yields also increased up to a maximum 

conversion. Finally, to determine the time needed for esterification process exactly, 

besides considering the maximum yields of esterification, it was also necessary to 

take the time required to reach the reaction temperature into account as shown in 

Table 9. The length for heating time to reach the reaction temperature was certainly 

longer and the energy consumption was surely greater for higher reaction 

temperature. Consequently, a faster reaction at a set temperature was desirable.  

In the next chapter, we proposed a new development to increase the 

performance of optimization that applied in control system with an adaptive 

capability to accomodate the various disturbance in esterification process.  

 

Conclusion 

The system of real-time monitoring glycerol esterification process with mid-

IR sensors classifying with SVM was contributed to support the identification  

esterification status in every minute and to get information for the time needed for 

the esterification process. This esterification status achieved a good performance 

when classifying into 3 states as initialization, work on process and finishing. This 

classification was trained and tested in Orange Software for data mining using SVM 
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method whereas the performance of the classifier was tested using ROC analysis. 

In applied for esterification optimization, the influence of variable condition, such 

as the temperature set in the reactor, had a relation to the process time needed. By 

using this monitoring system based on the measurement and classification of 

esterification forming using SVM from two inputs of mid-IR 3.4 and 5.5 µm 

sensors, we obtained the optimum process condition was set in 210oC and the time 

needed for the process was 120 minutes. By analyzing data collection which build 

from esterification process, a precise measurement and classifying still needs some 

improvements to cope the dynamic condition in the process. For future 

development an adaptive method to determine the status was needed to be 

implemented in control system and find the optimum number of  esterification 

status and control state. 
 



5 OPTIMIZATION MODEL OF GLYCEROL 

ESTERIFICATION PROCESS USING REAL-TIME 

ADAPTIVE CONTROL 

Abstract 
 

The synthesis reaction used in esterification needs high energy consumption 

and a precise processing time to get the best yield of the target. Based on the 

problem a model was formulated to optimize glycerol esterification process by 

minimizing the time needed for the process and maximizing the yield of 

Monoglycerides. This optimization has gained importance for boosting the 

esterification industry and improving the production efficiency. Optimization 

through adaptive monitoring and control has provided significant advances in the 

process efficiency, a lower energy consumption, and a better product quality. This 

paper presents the optimization with a computational intelligence in real-time and 

adaptive control (RTAC), as compared to the conventional (non-controlled) 

methods to monitor and control of glycerol esterification processes. The 

identification of esterification status based on temperature and time are evaluated 

to strengthen the optimization. An adaptive method as feature selection to select 

wavelength mid-IR sensors at specified intervals was carried out with Relief 

algorithm and Adaptive Pillar k-means clustering method to set the parameter 

control was proposed in this paper. Many combinations were evaluated from real 

time condition process, to achieve the best optimization results. The experimental 

results demonstrate that real-time adaptive control can be achieved by using three 

clusters, which are heating up, stabilizing and finishing. In RTAC, each cluster has 

its own parameter to set the control point by the servo motor that was attached at 

magnetic stirrer-heater. By using optimization parameter for each cluster, 

esterification process time can be shortened up to 20 minutes with a higher yield 

10% or more, lower range stirrer rotation between 300 rpm to 450 rpm and a lower 

final temperature between 2000C to 2100C. 

 

Introduction 
 

Currently, monoglycerides and diglycerides are important substances in 

processes where involving emulsification occur. As in previous chapter, one of the 

key challenges in the process industry is to find the best operation method for the 

plant under different conditions such as feed compositions, production rates, energy 

availability, feed and product compositions that change dynamically like in 

esterification process (Isabel et al. 2003). In industrial chemical process synthesis 

by direct esterification is widely used to get mono-glycerides and di-glycerides 

because this process is simple and feasible in the batch production system (Cramer 

et al. 2007).   

The task for optimizing process especially in esterification is usually tackled 

using a supervisory control technique, monitored manually to check the parameter 

of the process, this technique needs attention and still has loss of efficiency. One 

such technique that has received considerable attention in the process industry is 

the Real-Time Optimization (RTO) (Adetola et al. 2009). Real-Time Optimization 
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(RTO), which refers to the online economic optimization of a process plant, is a 

widely employed technology to meet this challenge.  

The limitation of RTO is that it is not adaptive to the type of the raw material 

(feed composition) that affected reaction process of esterification. In this paper, we 

address this issue by combining RTO with an Adaptive Controller (AC) for glycerol 

esterification reaction consisting a real-time identifier and a minimum variance 

regulator for the identification, done by augmenting the state with the unknown 

parameters of the process was previously proposed by Wieslander and Wittenmark 

in 1971.  

The main problems in adaptive control are to identify the present system 

parameters and to choose the appropriate control strategy. Early application of 

adaptive control was presented by Astrom in 1989 and have already used in the 

control of a permanent synchronous motor for digital adaptive velocity to maintain 

invariant velocity control over the motor in the presence of varying mechanical 

parameters.  

There are several chemical processes and reaction to produce mono 

glycerides. We focused on the chemical reaction process in selective synthesis of 

monoglycerides by esterification glycerol with fatty acids (Soenandi and Djatna 

2014), which has a complex reaction because of the immiscibility of reagents and 

the formation of glycerol dioleate and glycerol trioleate as composition of products. 

This reaction of the process esterification has characteristics that require time and 

energy for heating to make the esterification process occur, this process will be 

optimized by reducing the process time (minimization) and maximizing the yield 

of glycerol monooleate by monitoring and controlling (Soenandi et al. 2015).  

Process monitoring is the manipulation of sensor measurements (e.g. force, 

vision, temperature, the rate of transmittance) needed for determining the state or 

condition of the processes. Automatic monitoring algorithms utilize selected sensor 

measurements that, along with inputs, determine the process state. The states of 

complex processes are monitored by a sophisticated signal processing of sensor 

measurements. Process control is the manipulation of process variables to regulate 

the processes (Chryssolouris et al. 1992). In traditional methods, the operators 

perform on-line and off-line process control by adjusting the temperature button 

and always giving attention to the rotational speeds of stirrer reactor to suppress 

over-temperature, and watching the time needed for the process with a traditional 

stopwatch.  

In this chapter we defined the objectives are to select the wavelength sensors 

that are related to esterification status, to find the optimal number of data cluster for 

parameter control and to evaluate the system performance using a new proposed 

method. As a method, we describe Real-Time Adaptive Control (RTAC) as used to 

optimize the number of cluster from real-time data streaming using sensors, during 

the process of esterification in a bioreactor and clustered it to determine the set point 

parameter as decision variables of temperature and the rotational speed of stirrer. 

To achieve those tasks simultaneously, RTAC system is supported by real-time 

optimization methods using Relief (Reliable Elimination of Features) from Kira and 

Rendell (1992) as already disscussed in Chapter 2 page 10 and then Pillar k-means 

algorithm was deployed based on by Barabakh and Helen (2005) work, combined 

with real-time data acquisition from optical mid-IR sensors to set the best parameter 

control for the esterification process.  



32 

 

To optimize esterification process, the main challenge is how to determine 

the time needed for the process to get the best yield for the product. By using sensors 

to identify the composition of product mixed in mono-glycerides and di-glycerides. 

We state our optimization problems using parameters of temperature in and 

rotational stirrer speed to optimize process time and yield of product. To simplify 

the problem, we assumed the purity of reactant, ratio of charged reactant, catalyst   

concentrations as constant variables. 

  In RTAC, there are many tasks to do, initially byrom preparing the sensors 

and data acquisition system and processing real-time data, finding the best 

parameter for the process that is being affected by the condition of the external 

disturbance like reactor’s surrounding temperature, the impurity of raw material 

and instability of the electric current. On the other side, noise problem from the 

input sensor is also crucial. Calibration is also important because of the variability 

condition from the bioreactor and the sensitivity of the sensors used for setting 

parameter of the controller.  

The scope of high-performance computing is rapidly expanding from single 

parallel systems to get clusters of heterogeneous sequential and parallel systems. 

Moreover, as applications become more complex, more irregular, with a data-

dependent execution behavior, and more dynamic, with time-varying resource 

demands. 
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Figure 19 Monitoring and optimization in real time concept 

     In this chapter, we want to solve those optimization problems with an 

algorithm to adapt the changes in esterification process by clustering. In Figure 19 

was shown the Real-time optimization is the process of extracting interesting and 

previously unknown or unexpected knowledge from a large amount of process 

variable optimization and process variable control with support of real time 

monitoring such as measurement of transmittance, comparison between 

esterification status and input difference to obtain process variable optimization and 

control that developed in process model. Its correctness depends on not only to 

logical correctness but also time constraints. Various methods in the area of data 

mining have been developed in order to effectively and correctly discover 

knowledge.  
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Materials and Methods 

 

First, we formulated the optimization of esterification glycerol with oleic 

acid as objective functions are to minimize process time and maximize the yield of 

monoglycerides as target of the product. In mathematical formulations, they are 

expressed in Equation 12 until Equation 17. The boundaries were set in capability 

range of existing reactor operation. The Real-Time Adaptive Control problem to 

solve can be stated as: 

Objective functions:      t (𝐓, 𝐂, 𝐑, S)𝑻,𝑹
𝑚𝑖𝑛                                                   (12) 

                                             y(𝐓, 𝐂, 𝐑, S)𝑻,𝑹
𝑚𝑎𝑥                                                     (13) 

with decision variables : T = temperature (°C),  

C = target of composition (%),  

R = rotational stirrer (rpm),         (14) 

subject to :                    C=fp(T)  

                                                        g(T,C,R,S) ≤0                               (15) 

boundaries :        120 0C≤ T ≤ 230 0C                                           

200 ≤ R ≤ 500 rpm 

   S={1,2,...,n}                                                (17) 

 

where t is the process time needed, y is the yield of esterification (monoglycerides), 

fp is the equations set that represents the real process behavior, S is the cluster set 

from output and g is the process constraints set. 

This section describes the procedure and step from monitoring the reaction 

in reactor to get the solution for optimization in real time esterification process by 

controlled the parameter using the cluster. The components of this process detailed 

in this section are material and equipment, mid-IR sensors, dataset, feature 

selection, and clustering algorithm. 

For the esterification process as described in Chapter 1 in Introduction on 

page 1 were referred and all the reactants has already discussed in Chapter 3 page 

18. In order to get varied conditions of the temperature and reaction time the 

temperature was controlled at 180-230°C and the process time was varied between 

100-130 minutes. 

Selected mid-IR sensors were deployed in the real-time data acquisition 

system to identify the esterification condition process. Infrared energy is emitted or 

absorbed by molecules when they change their rotational-vibrational movements. 

Infrared energy excites vibrational modes in a molecule through a change in the 

dipole moment, making it a useful frequency/wavelength range for the study of 

these energy states for molecules of the proper symmetry. Infrared spectroscopy 

examines absorption and transmission of photons in the infrared energy range 

(Edelman et al. 2001). The LED mid-IR sensors with these center wavelengths:    

3.4 µm, 5.5 µm and 7.0 µm were used in this chapter. Each comes with the optically 

immersed specification. LEDs fabricated from III-V hetero structures grown onto 

Indium Arsenide (InAs) substrates type from Boston Electronics (Boston 2014) 

were used in this chapter for the identification of esterification condition in the 

process. These sensors were connected to analog inputs using a microcontroller 

from Arduino (Ivrea 2005) for streaming data in real time using a USB 2.0 serial 

port with BAUD rate of 9600bps. 
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The samples  was identified  used a sensor as described in Chapter 2 page 6 

with connected to Arduino Uno version 2.0  as shown in Appendix 2 and the real-

time data were collected and plotted in a graph with spreadsheet Microsoft Excel 

2013 (Figure 20) and interfaced with pyserial for computational data mining with 

Python Integrated Development Environment (PIDE). As long as the esterification 

process, real-time data streaming with duration of 160 minutes, step in minutes 

incremental recorded to the database. The input data were the percentage 

transmittance level of IR rays from wavelengths of 3.4, 5.5 and 7 µm, temperature 

in the reactor, rotation speed of stirrer in reactor and time of esterification process, 

while the output data were the esterification process.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 Real-time data from mid-IR sensor as 3.4µm(◊), 5.4 µm(□) and 7µm(Δ) 

In Figure 20 we have plotted the real time data measurement from three 

types of mid-IR sensors that has different minimum and maximum value of 

measurement for each distribution plot of sensors, this differences makes the 

measurement of yield was less precise. According this plot, that 7µm sensor has the 

smallest span of distribution. 

 

Sensor Selection Related to Esterification Status 

In this work, to select the sensors that are related to esterification status, we 

used the Relief algorithm which can deal with multiclass problems. The improved 

algorithm is more robust and also able to deal with incomplete and noisy data 

developed by Kira and Rendell (1992) as already discussed in Chapter 3 page 18. 

For validation purposes we used the algorithm in three-class that changed 
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esterification status as in Table 10 from an assay in the laboratory as FTIR (Fourier 

Transform Infra-Red) and GCMS (Gas Chromatography–Mass Spectrometry) with 

process time between 90 until 120 minutes. By experiment in laboratory we have 

collected 8 datasets from the processing glycerol esterification with a range of 

temperature from 1200C to 2300C and tested the esterification status in a certified 

laboratory as in Table 10. By comparing the value between them, we chose sensor 

1 (3.4 µm), sensor 2 (5.5 µm) and eliminated sensor 3 (7.0 µm) because it has the 

lowest weight value as shown in Figure 21. This means that sensor 3 was not 

suitable for identification of esterification status.   

 

Table 10 Example of esterification status dataset 

Transmittance Detection    (%) Esterification 

Sensor 1 

(x1) 

Sensor 2 

(x2) 

Sensor 3 

(x3) 
Status 

11 13 20 A 

12 15 24 A 

11 13 21 A 

20 21 24 B 

35 40 30 B 

48 45 32 B 

65 60 30 C 

73 70 35 C 

                  A is status of initialization; B is status of work on process; C is finishing 

As the result of in Relief method using data partially shown in Table 10 and              

30 datasets (Appendix 6) completely, that classfied by attribute of sensors 

measurement, process time and defined the class of esterification status from FTIR 

as shown in Figure 21 

 

 

 

 

 

Note: Sensor 1(x1): 5.5µm, Sensor 2(x2): 3.4 µm and Sensor 3(x3): 7µm 

Figure 21 Weight average from Relief method of each sensor type in 90-120 

minutes period  
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Pillar K-means Algorithm 

In case of to cluster the measurement data from sensor, pillar algorithm to 

support the real time aspect of this research was used, as an improvement from k-

means algorithm. First, the input for this algorithm was get from real-time data 

acquisition from sensors that selected with Relief as an attribute as x={xi | i=1,…,n} 

as in this research we used n=2 and randomly set the pillars to find initial centroids 

c={ci | i=1,…,k}. Next, in processing the algorithm considers that pillars placement 

should be located as far as possible from each other to obtain the centroid. After 

pillar was located, then it uses DM for storing the accumulated distance metric and 

D for storing the distance metric for each iteration, where DM={dmi | i=1,…,n} and 

D={di | i=1,…,n}. To analyze the closeness of the final centroids of the clustering 

result to the centroids of the real-time data sets from Barakbah and Helen (2005) it 

can be defined as:  

                                                        min ∑(‖𝑐𝑖 − 𝑟𝑖‖

𝑘

𝑖=1

                                                 (18) 

                                                                                  

where ci is ith final centroid of clustering result and ri is ith real centroid of data set.  

 

                   

START

Sensor 

Output

(Voltage)

RELIEF

DATABASE

Pillar Algorithm

K-Means Clustering

Optimized 

Centroids

Set Parameter for 

Control

END

Digital Bit to Serial

 
Figure 22 Flowchart of initial centroid optimization of Pillar k-means method 

 

To get the right number of data cluster from two sensors input from defined 

centroid, this chapter we applied the k-means clustering for grouping by Pillar 

algorithm after we implemented Relief method as a flowchart in Figure 22 and 

measured of the Silhouette value. The Pillar algorithm is very robust and superior 

for initial centroids optimization for k-means by positioning all centroids far 

separately among them in the data distribution (Barakbah and Kiyoki 2010). The 

thought process of determining a set of pillars locations in order to make a stable 

house or building inspires this algorithm. By distributing the pillars as far as 

possible from each other within the pressure distribution of a roof, the pillars can 

withstand the roof’s pressure and to stabilize a house or building. It considers the 

pillars, which should be located as far as possible from each other to withstand the 
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pressure distribution of a roof, a number of centroids among the gravity weight of 

data distribution in the vector space. 

Therefore, this algorithm steps conducted for data sensor segmentation 

using Pillar k-means clustering are read the dataset as a matrix and after the matrix 

was built this algorithm was calculated the data size in means arrayed. Next, find a 

number of clusters with decided initial furthest centroid of the cluster using the 

Pillar k-means algorithm and create a group of data. Finally, we get control output 

from data segmentation. 

 

Silhouette score 

In this research, to determine the optimal number of the cluster from 

sensors, we used the Silhouette score that refers to a method of interpretation and 

validation of consistency within clusters of data.  

Silhouette refers to a method of interpretation and validation of consistency 

within clusters of data. The technique provides a simple graphical representation of 

how well each object lies within its cluster. The technique provides a succinct 

graphical representation of how well each object lies within its cluster (Rousseeuw 

1987). The silhouette value is a measure of how similar an object is to its own 

cluster (cohesion) compared to other clusters (separation). The silhouette ranges 

from -1 to 1, where a high value indicates that the object is well matched to its own 

cluster and poorly matched to neighboring clusters. If most objects have a high 

value, then the clustering configuration is appropriate The Silhouette method also 

relates compactness to separation, it is based on the mean score for every point in 

the dataset. This difference is then divided by a normalizing term, which is the 

greater of the two averages, as the formulation from Rousseeuw (1987) for 

clustering as in Equation 19 and Silhouette score as in Equation 20 are 

                                   

                                               max (
𝐴𝑟𝑔

𝑏(𝑖) − 𝑎(𝑖)

1

𝑁
∑ 𝑑(𝑖, 𝑚(𝑖))

𝑁

𝑖=0

)                          (19) 

           

                                                               𝑆𝑖 =
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
                                     (20) 

                              
where N is the number of points in the data set, d(i,m(i)) is the dissimilarity of object 

i to the nearest representative object, denoted by m(i), a(i) is the average 

dissimilarity of i with all other data within the same cluster, b(i) is the lowest 

average dissimilarity of  i to any other cluster where Si is a Silhouette score of            

ith cluster. 

 

Integration of Sensor Device And Algorithms 

Integration of sensor devices and the algorithms (Relief and Pillar k-means) 

was intended to measure the transmittance level from sensor as an variable input 

which is related to  esterification process precisely to set the parameter for control. 

The data was read and collected by the computer using USB 2.0 with a          

1-minute interval time sampling to build the database. The esterification process 

needs a long time to complete (approximately 120-180 minutes) to produce high 
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yield and good quality of product. By using a computational intelligence we still 

need time to process the data before we can get the information needed especially 

in dynamic reactions.  

In order to solve this problem, we used the data sampling size of 1 minute, 

and then we applied the Pillar algorithm, these architecture computational models 

were designed on a computer with CPU processor Intel Celeron 1007U and a 

memory of 2GB with Software Python version 2.7.10 (Python 2015). Based on the 

data transmittance read by the sensor, we then used Relief method in spreadsheet 

Microsoft Excel 2013 with Macro programming to select the sensor that is suitable 

for the esterification, and sent the signal that was detected by the sensor selected to 

be clustered with the Pillar k-means in Python 2.7.10.  

After clustering the data, the parameters of the process, which are 

temperature and rotational speed of the stirrer, were used to set the position levels 

of the PID control in Arduino Uno Microcontroller (Margolis 2011). We used a 

proportional-integral-derivative controller (PID controller) because it has a control 

loop feedback mechanism (controller) widely used in industrial control systems. 

PID control is often combined with logic, sequential  functions,  selectors,  and  

simple  function  blocks  to build complicated automation systems used for energy 

production,  transportation, and manufacturing. In this research, a PID controller 

calculates an error value as the difference between a measured process variable and 

the desired set point and used the values to adjust the level or position of rotary 

resistor switch at the magnetic stirrer and heater, using a servo motor.  

 

 

 

 

 

 

 

                                               REAL-TIME CONTROL 

Figure 23 Peripheral block diagram of the integration real-time control system 

In Figure 23 has shown the integration of real-time measurement block as 

implementation in Arduino (Ivrea 2005) with sensors and real-time control block 

that run in python coding (Python 2015) in a computer as completely shown in 

Appendix 3. This proposed of control mechanism was very useful in adaptive real-

time process monitoring and control in esterification using heater and stirrer, 

Arduino and computer to develop an RTO (Adetola et al. 2009). 
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Experimental Results 

From laboratory scale equipment and integration between sensor and 

algorithm that explained in this section, we conducted a performance comparison 

between the traditional control and the proposed method of adaptive optimization 

control with one sequence of batch learning for the computational intelligence to 

find the optimum cluster with Silhouette score and set the optimization control. In 

traditional control, we used monitoring by a human to control the set temperature 

at 2300C and process time as 120 minutes.  

Table 11 Selected mid-IR sensor 

Minutes Sensor 3.4µm (x1) Sensor 5.5µm(x2) Sensor 7µm(x3) 

0 ON OFF ON 

30 OFF ON ON 

60 OFF ON ON 

90 ON ON OFF 

120 ON ON OFF 

 

For the adaptive proposed method, as Relief algorithm to select the sensor 

wavelength that closely related to esterification process as a result of comparison 

between weight average score from Relief in batch learning process for 0, 30, 60, 

90, 120 minutes (Table 11) and real-time adaptive control method with the Pillar k-

means algorithm used in this paper, we set α=0.25 and β=0.58 for the detection the 

outliers as used in Barakbah (2010) and the data points with silhouette score as in 

Table 12 to Table 15. 

To find the best of silhouette score, first we run the clustering algorithm in 

K=5 ( 5 clusters) to get the data point for each cluster 

 

Table 12 Cluster set for K=5 with Silhouette score of 0.536 

Cluster Data points of time (Minutes) 

0 87,89,90,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110

,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,12

9,130,131,132,133,134,135 

1 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 

2 1,2,3,4,5 

3 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46 

4 45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,

72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,88,93, 
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Next we run for the clustering algorithm in K=4 (4 clusters) to get the data point for 

each cluster and compared to another number of cluster. 

Table 13 Cluster set for K=4 with Silhouette score of 0.489 

Cluster Data points of time (Minutes) 

0 107,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,

124,125,126,127,128,129,130,131,132,133,134,135 

1 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,5

5,56,58,59,60,61 

2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,1819,20,21,22,23,24,25,26,

27,28,29,30,31,32,57 

3 62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,8

4,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104

,105,106,108 

 

Finally, we run for the clustering algorithm in K=3 (3 clusters) for type 1 that has 

purity 80% and type 2 with 90% purity as in Table 14 and Table 15. 

 

Table 14 Cluster set for K=3 raw material type 1 with Silhouette score of 0.604 

Cluster Data points of time (Minutes) 

0 107,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,

124,125,126,127,128,129,130,131,132,133,134,135 

1 54,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,8

3,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,

104,105,106,108 

2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,4

9,50,51,52,53,55,56,57,58,59,60,61 

 

From the result, it shows the conditions and characteristic for the control set of the 

esterification process in the laboratories, the data clustering carried out with K=3 

gave a silhouette score of 0.601-0.604, and with K=4 a silhouette score of 0.489.  
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Table 15 Cluster set for K=3 raw material type 2 with Silhouette score of 0.601 

Cluster Data points of time (Minutes) 

0 109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,1

25,126,127,128,129,130,131,132,133,134,135 

1 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81

,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,1

03,104,105,106,107,108 

2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,2

7,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,

50,51,52,53,55,56,57,58 

 

The silhouette score with K=3 with two type of feed composition type 1 

with 80% and type 2 with 90% purity was higher than K=4 and K=5, so we decided 

to use three control of clusters as heating up, stabilizing and finishing for 

temperature position level and rotational stirrer speed control parameter as in Table 

16. 

 

Table 16 Control set with cluster 

 

and by comparison the result from existing methods (traditional) that operator was 

run the process using the set temperature and stirrer as previous research from 

literature (Pardi 2005), which is not use the control system listed in Table 17 that 

compared in parameters  as process time, yield, stirrer speed and final temperature 

with variations in raw material purity. 

According the experiments results of this research, we found the advantage 

of this proposed model are in the esterification process finished in a shorter time 

than with existing methods, an increase in the percentage yield of product, a lower 

final temperature in the reactor (reduce the consumption of energy), lower range of 

stirrer rotation using two type of feed composition of glycerol with 80% and 90% 

purity. 

 

 

 

 

Cluster Time 

(Minutes) 

Temperature 

position level 

Stirrer speed 

position level 

Mode 

2 1-58 5 (Full) 2 Heating Up 

1 59-108 3-4 3-4 Stabilizing 

0 109-135 2 4 Finishing 
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Table 17 Comparison result of existing and adaptive methods 

Comparison 

Methods 

Existing 

(Non-

Controlled) 

Adaptive used of 

80% raw material 

purity 

Adaptive used of 

90% raw material 

purity 

Process Time 120 minutes 105 minutes 100 minutes 

Yield (%) 75 77 85 

Stirrer Speed 

(rpm) 200-500 300-450 300-450 

Final 

Temperature(°C) 230 210 200 

 

We listed the comparison of output from several methods as shown in Table 

17. On the other hand, the disadvantage of this proposed model are this 

esterification optimization system works well in reaction with oleic acid but need a 

different sensor for the different reactant, this system still require learning batch 

and several precise laboratory tests for calibration. 

Discussion 

In this paper real-time monitoring was supported with adaptive 

classification method because of the phase of esterification process needs to  

identify used three IR sensors which has a different wavelength and different 

maximum and minimum measurement, with Relief method the selection of sensors 

was well implemented with specified intervals within 30 minutes. This 30 minutes 

related to control respond as a characterization of the reactor and the heater in this 

experiments. Next, the output value from each sensor in analog signal was 

converted in data acquisition system to defined the state of esterification.  

For data training we used 10 samples of data for calibration and defined the 

number of clustered data in three sections because with adaptive k-means that tested 

by set K=3, 4 and 5, for K=3 we get the highest silhouette score as 0.604 it means 

the best (suitable) number of data clusters for parameter control are three. We did 

not test for a number of the data cluster more than five because the esterification 

process has very long process time and slow of control response in the reactor. To 

set temperature and rotational speed control, in this paper we set the variable 

position of servos. As shown in Table 17 the implementation of the new adaptive 

system has reduced the process time in esterification.  

In comparison to the previous research from Chryssolouris et al. (1992) that   

synthesized the state variable estimates determined by the different measurement 

and corresponding process models through a mechanism based on training such as 

a neural network and not use clustering method, in this chapter we proposed the 

adaptive control in cluster with Pillar k-means algorithm using sensors with feature 

selection. 
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To identify the dynamic condition in esterification process more precisely, 

the next chapter we implemented an adaptive sensor selection method, to improve 

the measurement of esterification identification state in real time. 

 

Conclusion 

In this chapter, we have developed a new approach for optimization process 

of esterification glycerol with oleic acid using Relief feature selection to select the 

sensors at specified intervals within 30 minutes supported with Pillar k-means data 

clustering algorithm. This clustering method used to determine the set control 

parameters like temperature and rotational speed of stirrer in real time adaptive 

control which has reached optimality using 3 clusters. From the experimental 

results of this chapter show a new approach for this research is able to identify the 

conditions of the process, increased product yield 10% or more, reduced process 

time up to 20 minutes, reduced range of stirrer rotation between 300rpm to 450rpm 

and reached a lower final temperature between 2000C to 2100C. The 

recommendation for future research is the model will develop using IR sensors with 

variable wavelength an another adaptive algorithm for sensor selection.  

 



6 REAL-TIME OPTIMIZATION USING GRADIENT 

ADAPTIVE SELECTION OF INFRARED SENSORS FOR 

GLYCEROL ESTERIFICATION 

Abstract 

 

Recently, derivatives production of glycerol by esterification process, has many 

constraints such as the yield of target production which is not constant and lack of 

efficiency. As previous research, the yield and efficiency was improved by using 

accurate monitoring and control of the process. As a new development, we used a 

Real Time Optimization (RTO) using gradient adaptive selection sensors and 

control to optimize esterification process which has to cover various disturbance 

and uncertainty in real time mode. Thus, the objectives of this chapter are: to 

analyze the integration of esterification process using Self-Optimization (SO) 

combined with Necessary Condition Optimum (NCO) supported with laboratory 

scale mid-IR sensors, to develop a real-time control state with adaptive selection 

sensors system with computational intelligences and to measure the proposed 

optimization system indicator in batch process. To achieve those objectives, firstly 

a Business Process Modelling and Notation (BPMN 2.0) was built to describe the 

tasks of SO workflow in collaboration with NCO as an abstraction for conceptual 

phase. Next, using the modeling and its implementation with Stateflow package 

was deployed to simulate the three states of gradient-based adaptive control 

combined with Support Vector Machine (SVM) classification. This method was 

validated by running the esterification process in laboratory scale apparatus. In 

validation, RTO with adaptive selection sensors showed increased yield up to 14%, 

reduced the process duration up to 20 minutes, with the effective stirring speed 

between 300 rpm to 400 rpm and reaction temperature between 200°C to 210°C.  

 

Introduction 

The esterification product such as monoglyceride and diglyceride are 

representing high needs as modifying agents and showing steadily incremental for 

industrial consumption in the future, as they have various industrial application. 

This product as a raw material is required in pharmaceutical, cosmetics, and 

personal care industries, also in ink manufacturing (Pagliaro and Rossi 2008, 

Fernandez et al. 2005, Mostafa et al. 2013). Another use for a derivative product of 

glycerol in Indonesia, particularly in oil mining, this substance used for mixing to 

produce OBM (Oil Based Mud) and WBM (Water Based Mud). Production of 

monoglyceride from esterification of glycerol and synthesis of middle or long-chain 

fatty acids offers promising industrial opportunities (Hui 1996). 

In esterification process, as previously researched (Srinivasan et al. 2003), 

there is an influence of process variables as temperature and time requirement 

affected their efficiency in esterification study. This process has constraints such as 

inconstant yield of production target and lack of efficiency for it has synthesize 

reaction that needs high-energy in the reactor to achieve desired temperature and 

time for the process. As explained in previous chapter, to optimize the esterification 
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reaction to get a glycerol monooleate substance as target of product, it is essential 

to undergo the process real time mode, which has to cover various disturbance and 

uncertainty. 

Traditionally, this type of process was operated using operator judgment 

(experienced-based) or non-controlled. By traditional method, it is not possible to 

exactly determine when it is necessary to supply the energy for heating up the 

reactor or when the process has completely formed the target product, especially 

when the new type of raw material with different purity was used. In this chapter, 

we improved the precision of real-time mode measurement with sensor selection 

method to accommodate the control of process variables more precisely. 

As related in this chapter, the Real Time Optimization henceforth referred 

to as RTO is used to indicate the continuous re-evaluation of selecting variables in 

operation (Chacuat et al. 2009) as a part of this research and in the next development 

of RTO for chemical process based on necessary condition optimum (Srinivasan 

and Bonvin 2007). With recent advances in digital hardware and optimization 

software the RTO method can connected to a computer control systems (Bocker et 

al. 2006). 

In recent years, spectroscopic methods using infrared has gained popularity 

to be chosen in industrial process control in real time, especially for esterification 

process (Blanco et al. 2004). A systematic and rational approach such as feature 

selection was required in order to accommodate different sources of sensors and 

process fluctuations as a dynamic condition such as data quality that can affect 

monitoring and classification performance from class imbalance and noisy 

attributes (Yusta 2009) and adjusting the set point basic control accordingly to adapt 

the system requirements. Feature selection is generally used in a machine learning 

when the learning task involves high-dimensional and noisy attribute datasets as 

parameter as observed in real time sensor application. In this chapter, feature 

selection with gradient measurement was used to select the type of appropriate 

sensor that related to measurement in this esterification process. This higher 

dimensional result was improved the accuracy in monitoring measurement, 

especially for yield measurement. 

In this chapter, we set the combination of  RTO with adaptive sensor, 

supported by computational intelligence; so the objectives of this chapter are to 

analyze and design the dynamic condition process of glycerol esterification in 

detailed, in which Business Process Model and Notation version 2.0 was used. 

Next. gradient measurement used to select the sensors then supported with 

computational intelligence such as classification by Support Vector Machine 

(SVM) consecutively set to determine the state condition, was applied in the 

microcontroller. As validation for esterification process, the investigated system 

consists of several performance indicators that have to be fulfilled; those are yield, 

process time, stirring speed and temperature. 
 

Methods 

 

Current Development in Real-Time Optimization 

RTO concept was developed based on Self-Optimization (SO), which is 

defined in Skogestad (2000) as a situation when we achieved an acceptable loss 

with constant set point values for the controlled variables without the need to re-



46 

 

optimize when disturbances occur. In this chapter, the previous method combined 

with Necessary Condition Optimum (NCO) (Srinivasan et al. 2008). However, 

according to the research from Ye et al. in 2012 stated that it is necessary to measure 

all of the NCO components in real time. By validation, we claimed this new 

optimization of combined method, supported with measurement by adaptive 

selection sensor and real-time data acquisition system, is useful for chemical 

industry application that has a dynamic condition such as esterification process. In 

sensor deployments, each sensor collected data at regular time intervals, captured a 

time series representing the occurrences of dynamic condition and build the 

database that needs classification approach (Alstad et al. 2009). In this chapter, the 

developed active control variables are obtained in real time with measurement from 

the sensor with adaptive selection and computed for tracking the NCO to select the 

state with computational intelligence classification. The real-time task has an 

integral action to track the selected sensor using the adaptive method and to set the 

control at necessary set point with the state. The set point was determined as 

considered to the best performance condition of those apparatus such as a heater 

and agitation motor.   

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 24 Nested relationship between SO and NCO in RTO 

In the Figure 24 as shown the diagram of an integration of SO and NCO 

method to set in real-time control process that focused on NCO tracking and IR 

sensor measurement. The concept of SO is a strategic aim to appropriately select 

the controlled variables (CVs) in control structures so when they are maintained at 

constant set points, the overall plant operation is optimal or near optimal despite 

various disturbance with implemented of measurement combination (Francois et al. 

2005); this concept was related to offline system. To develop a real- time system 

and improve the performance, the concept of SO was integrated with NCO that has 

related to the CVs to control the process (Halvorsen et al. 2003).  
 

Implementation of RTO Method with Gradient and State Control to Optimize 

Process Time 

Many run-time process variations need to be accounted for, especially in the 

industrial process with chemical reaction, typically to cope with these uncertainties 
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by adopting a conservative strategy that guarantees constraint satisfaction even in 

the worst-case situation. This measurement can be used in an optimization 

framework to compensate the effects of uncertainty in the form of model mismatch 

or process disturbances. Nowadays, Real-Time Optimization with Necessary 

Conditions of Optimality (NCO) proposed by Jäschke (Jaschke and Skogestad 

2011) and optimal operation is achieved by designing a “smart” control structure. 

As SOC was combined with NCO tracking (Srinivasan et al. 2003) or zone control 

MPC (Graciano et al. 2015), it’s become Real Time Optimization that using online 

model. Among the various options for input adoption, promising approach consists 

of directly enforcing the necessary conditions of optimality (NCO) that include two 

parts, the active constraints and the sensitivities (Srinivasan et al. 2008). The use of 

measurements to compensate the effect of uncertainty has recently gained attention 

in the context of real-time optimization of dynamic systems.  

DYNAMIC STATIC

NECESSARY 

CONDITION OPTIMUM

(NCO)

CONTROL

PROBLEM

OPTIMIZATION PROBLEM

Active Constraint

And Sensitivity

REAL TIME OPTIMIZATION

 

Figure 25 Connection diagram of NCO and control  

In Figure 25 the RTO has commonly used approach consists of updating a 

process model and performing numerical optimization problem using the refined 

model as is dynamic and static condition. In this chapter, we used the methodology 

as in NCO, there is a two-level approach that does not require repeating the 

optimization as named active constraint and sensitivity. At the upper level, the 

constraints that are active in the optimal solution are identified from optimization 

of a nominal process model. At the lower level, feedback control is used to enforce 

the necessary conditions of optimality to define control problem in matched criteria.  

To select the appropriate sensor for data processing in real time condition 

within 3 different wavelengths of IR sensors from the model developed in the 

previous research (Soenandi et al. 2015), and to improve the performance in 

measurement a gradient method was used to select the appropriate sensors for 

regression. The gradient of f is defined as the unique vector field whose dot 

product with any vector v at each point x  is the directional derivative  of  f along v 

(Korn 2000) as shown in Equation 21, that is: 

 (21) 

 

which: 

𝛁𝒇(𝒙)= vector field 

f(x)= vector point 

Dv= derivative of directional 

In this research, we measured the gradient by comparing sample data points 

from 2-dimensional field as identified by the sensors. The formulation can be seen 

https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Euclidean_vector
https://en.wikipedia.org/wiki/Directional_derivative
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in Equation 22 and by limiting the gradient value mi we set the decision to use the 

data or pass it,  

𝑚𝑖 =
𝑡𝑛−𝑡𝑛−1

𝑥𝑛−𝑥𝑛−1
                             (22) 

which: 

tn= time interval sampling  

xn= value from sensor 

            The optimization algorithm uses the process model and the objective function 

to solve the new optimum state for the process. Afterward, the optimal operation 

can be formulated in Equation 23 as maximizing a process time function t: 

Objective function:                         

                                                         𝑦(𝐓, 𝐑, 𝑺𝒊, Cn)𝑇,𝑅
𝑚𝑎𝑥                                (23)   

With decision variables:     T: temperature (⁰C) 

        R :stirrer rotation (rpm) 

                                                    Si :ith sensor measurement with selection  

        Cn: n
th  control state          

Subject to:                                        Cn=fi(Si) 

                                  𝑔(𝐓, 𝐑, 𝑺𝒊, Cn) ≤ 0               (24) 

where fi is the measurement set that represents the process from sensor, g is the 

process constraints set. 

 

In addition, assumed that we had a plant measurement model from the sensor 
 

𝐘 = 𝑓𝑦(u, 𝐗, 𝐃(t))                           (25) 

Where 𝐘 is the n-dimensional vector of measurements, and fy is the function 

mapping the variables u, X and D(t) onto the measurement space. As researched  by 

Datskov in 2006, the optimal operating point found by solving Equation 25 that 

must be realized through a control system. To implement the control system, any 

number of degrees freedom as changeable variables from the optimal operating 

point vector must be specified and classified in the identification process stage with 

Support Vector Machine (SVM) algorithm and developed adaptive control.  

       Several reactions and variation conditions were tested in Surfactant and 

Bioenergy Research Center (SBRC) Bogor Agricultural University at 

Baranangsiang. For RTO of esterification process, real-time data and laboratory 

data were integrated and merged first, both in steady state manner. In measuring the 

performance, yield is one of the most important indexes for the esterification 

process. The yield was calculated for operation evaluations in each batch basis.  
 

Experimental Results 

 

Analysis and Design System 

     To support the new concept of RTO, in this research BPMN 2.0 diagrams 

(Sap 2013) was used to analyze and design the system modelling for esterification 

process by abstraction for conceptual design to describe the section of SO and NCO 

in detail (Figure 26), with this diagram we can describe more detail for each task of 
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digital apparatus and communication between them, which will be the base 

structure for programming in Arduino as described in Appendix 8 to run the 

implementation step such as data acquisition and controlling in the esterification 

process. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 BPMN diagram for SO and NCO 

Characterization Tests  

      This study carried out several characterization tests for calibration the 

signal from sensors, both for the identification and validation of the process results, 

such as Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-

Mass Spectrometry (GCMS). The information (transmittance level) from FTIR Test 

was used for selecting the wavelength for the sensor. The selected wavelengths, 

regarding the difference of transmittance level between before, during the process 

and after esterification were: 3400nm, 5500nm and 7000nm in Figure 27. To 

confirm this selected wavelength, a graph of GCMS test was carried out to ascertain 

the level of (yield) glycerol resulted from the end of esterification as the production 

target during the process span, generated by Sigmaplot 13.0 (Crane 2014). 

 

 

 

 

 

 
 

 

 

 

 

Figure 27 Spectrum FTIR before esterification  (   ) and after esterification (     ) 

3400nm 5500nm 7000nm Wavelength 
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Glycerol MonoOleate 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 GCMS spectrum for product testing from sample with the treatment of 

200°C for 120 minutes 

The test of GCMS in sample with variance in temperature and process time 

compared with a database of WILLEY09TH.L was detected as glycerol monooleate 

by the reference number of 587486 with molecular weight =356. The yield obtained 

at 200°C for 100 minutes’ process using raw material with 90% purity was 90% as 

shown in Figure 28 and more detail in Appendix 9 and 10, which was the highest 

obtainable yield compared to another condition. 

 

State Flow Model 

            This model assisted in predicting and simulating the behavior of control 

with state, using Stateflow (MathWorks 2014). In this stage, we wanted to simulate 

a control logic tool used for modelling reactive systems via state machines and flow 

charts within a Simulink model with specific applications in mode logic, where each 

discrete mode of a system represented by a state was deployed as control model as 

in Figure 29,  

 

Figure 29 Control model of self-optimization in Stateflow 

Palmitic 

Acid 
Linoleic 

Acid 

Dioleic 
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Figure 30 Control state model in Stateflow 

In Figure 30 shown the Stateflow model that has three states as heating up, stabilize 

and finished. Each states has each control variables for heater, stirrer and rate. In 

this research we have set for the heating up states of heater and stirrer was 300 

angle degrees position of switch (zero angle degree in off and 340 angle degrees 

in full), for stabilize states of heater and stirrer was 200 angle degrees position of 

switch and for finished states the position switch of heater and stirrer was in 100 

angle degrees. 

 

Figure 31 Control model of reactor in Stateflow 

In Figure 31 in PID block we set the constant for Stateflow in heater and stirrer 

block using laplace transform with coefficients for the proportional, integral, and 

derivative P=1.1, I=1.2 and D=0.5 respectively, as a model of control reactor 

characterization. In esterification block there is reaction and variable process that 

need to define as a function. The block of esterification connected to rate that 

plotted the reaction of control system as a responds of disturbance.  

 

Figure 32 Control model of esterification in Stateflow 

In control model of esterification we set the transfer function with numerator 

coefficient is [1], denominator coefficients are [1 2.1 1.5] and absolute tolerance 

[auto] as in Figure 32 that we obtained by using Tfest function in Stateflow 

(MathWorks 2014) with esterification data from laboratory experiments. 
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Real Time Data Acquisition  

            Data acquisition was defined as processing of sampling signals that measure 

real world physical conditions (usually using sensors) and converting the result into 

digital numeric values that can be manipulated by a computer. In this research, real-

time data acquisition was operated in Arduino Mega 2560, connected via USB 2.0. 

The database was built in Personal Computer with specification of Core i5 2.2 GHz 

CPU, 4GB RAM, using Microsoft Excel with add-in program named PLX-DAQ 

(Parallax-Data Acquisition) to collect the data from sensor model set (S1, S2 and S3) 

listed in Table 18. Then, the task of selecting the sensor and the adaptive control 

was sequentially run in. The task of data acquisition from the sensors was collected 

in one-second interval during 130 minutes of each batch process. Hence, the total 

data collected in the database was approximately containing 7200 items data for 

each sensor and the sensors was selected by using gradient value minimum of 1.6 

in 10 second interval.  

 
Table 18 List of sensor model 

Symbol Description Availability Sampling 
Period 

Number of 
samples 

S1 The temperature of reactor Real-time 1 s 7200 

S2 The composition of target yield Real-time 1 s 7200 

S3 The speed of agitation Real-time 1 s 7200 

 

Especially for the measurement of composition target yield (S2), after the sensor 

mid-IR selection step, we developed regression analysis for estimating the 

relationships among variables (X1, X2 X3) from sensor input. In this research, we 

performed regression for converting variables of sensor measurement to measure 

the yield of the esterification reaction, as for the result can be seen in Table 19. For 

non-adaptive measurement, we used regression Y=-33.62390+ 1.04874(X1) 

+0.8362(X2)- 0.29288(X3) from the start to the end of the process. But in adaptive 

selection sensor, we performed different regression for each state (Table 19). To 

check the regression of those equation for adaptive selection, we have computed 

the coefficient of determination from each state and the range was from 0.9280 to 

0.9878. 

 
Table 19 Yield regression (S2) for adaptive sensor selected in each state 

 

For the esterification data measurement, we retrieved from Chapter 5 page 

34. The real-time data plot acquisition using 3 wavelength mid-IR sensors within 

State Sensor Selection 

Regression 

  

 

  

3.4µm 

(X1) 

5.5µm 

(X2) 

7µm 

(X3) 

R2 

1 ON ON ON 

Y= -33.62390+ 1.04874(X1) + 

0.8362(X2)- 0.29288(X3) 

0.9668 

2 OFF ON ON 

Y= 59.85565-0.04523(X2) 

+0.062339(X3) 

0.9878 

3 ON ON OFF 

Y=26.77324+0.039855(X1) 

+0.709494(X2) 

0.9280 
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time length 7200 seconds, the value was a digital bit number output related for 

transmittance level in the esterification process, in each wavelength and determine 

the track of data with this regression.  

The measurement of yield from the regression was resulted by collected data 

input from sensors. We compared it by setting in a non-adaptive sensors selection 

(revered to Chapter 5) and adaptive sensor mode using two samples of purity, to 

find the different yield measurement from each mode, for the next step using in 

validation.  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 Comparison of yield measurement from mid-IR sensors with adaptive 

gradient selection (     ) and non-adaptive (     ) 

As shown in Figure 33 to measure the performance of development method, 

we compared the yield measurement using regression. As seen in the figure, there 

are slightly difference in yield measurement between adaptive and non-adaptive 

methods, especially in 500, 1000, 5000 and 6000 second. 

Table 20 Comparison yield from non-adaptive and gradient adaptive selection 

Sample Yield (%) 

  

Non Adaptive 

Sensor 

Adaptive Sensor 

with gradient 

selection 

GCMS 

Test 

80% purity glycerol  75 78 79 

processed in 210°C and 105 

minutes 

Percentage error 

5.33% 

Percentage error 

1.28%    

90% purity glycerol  85 89 90 

processed in 200°C and 100 

minutes 

Percentage error 

4.70% 

 Percentage error 

1.12%    
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By comparing the yield measurement from non-adaptive sensor and adaptive sensor 
selection with gradient, we obtained the smallest percentage error in experiment 
using 90% purity raw material with treatment of 200°C for 100 minutes as 1.12% 
as shown in Table 20.  

Table 21 Some sampling time for SVM in state control variable 

Sampling time 

(min) 

                  Selecting Sensor                                  Controlled Variable   

Sensor 1 Sensor 2 Sensor 3 State Temperature State Agitation 

0 On (10) On(15) On(16) Heating-up Heating-up 

30 On(20) On(30) On(40) Heating-up Work on process 

70 Off On(45) On(46) Work on process Work on process 

88 On(54) On(60) Off Finishing Finishing 

120 On(73) On(60) Off Finishing Finishing 

 

In this research, Table 21 was shown the result for adaptive gradient selection sensor 
implementation as on or off for each sensor, in several sampling time  

 

Table 22 Comparison result of existing and adaptive selection sensors 

 

Comparison 

Methods 

Existing           

(Non-

Controlled) 

Optimization with 

real time adaptive 

control 

Real time optimization 

using sensors adaptive 

selection of sensors 

Process Time 120 minutes 100 minutes 100 minutes 

Yield (%) 75 85 89 

Stirrer Speed (rpm) 200-500 300-450 300-450 

Final Temperature(°C) 230 210 200 

 

In Table 22 we listed the comparison of esterification time process reduction 
between optimization with real-time adaptive control and real-time optimization 
using sensors adaptive selection of sensors  

 

Discussion 

 In this research to improve the yield measurement is an important step to 

optimize the esterification process precisely. In comparison to previous research 

from Srinivasan et al. (2008) that develop the method for tracking the necessary 

conditions of optimality with changing set of active constraints using a barrier-

penalty function. That method still have a problem when the set of active constraints 

is unknown or changes due to uncertainty. This problem was solved by 

implementation of adaptive selection of sensors and cluster set of control.  

The implementation of analysis and design by using BPMN 2.0 was 

successful to describe the requirement of SO and NCO for the dynamic condition 

in esterification process.  
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We found the accuracy of yield measurement using adaptive methods with 

the gradient method was more precise and it had reduced the process time of 

esterification. The equation of regression was deployed to define the yield 

measurement as a number. We set the adaptive selection sensors worked in a 

gradient value between 1.6 and 1.8 with 10 seconds’ time interval because in this 

gradient and time interval the control for heater and strirrer was obtained to increase 

the yield of glycerol esterification.  

In order to measure the yield exactly, we compared the sample of production 

of adaptive gradient sensor selection with GCMS test; we used only several sample 

tests in order to simplify the validation and to convince the sensors has been well 

calibrated. For the comparison of optimization indicator, we have tried the 

experiments until we obtained 75-89% as highest performance using laboratory 

scale apparatus, which maximum temperature limit was set at 210oC to extend the 

lifetime operation of the heater. 

For validation purpose, it is necessary to indicate related information of 

adaptive selection sensors performance using a gradient with the regression to 

measure the yield measurement between non-adaptive and adaptive sensor selection 

using two samples of raw material (Table 20). Result showed that there was an 

improvement in measurement of yield using the adaptive method. Those result 

prove the output of SVM in state control, which was listed partially in Table 21 with 

state, was clustered in proportionally. According to the improvement result in this 

chapter, for the next chapter, we proposed the scaling up model for higher capacity 

in industrial implementation. 

 
Table 23 Comparison of optimization indicators 

 

Indicators 

Comparison 

Adaptive 

Control in Raw 

Material Purity 

of 80% 

Adaptive 

Control in Raw 

Material Purity 

of 90% 

Adaptive Control 

with Gradient in 

Raw Material Purity 

of 80% 

Adaptive Control 

with Gradient in 

Raw Material Purity 

of 90% 

Process Time 

(minutes) 
105 100 100 98 

%Yield 77 85 78 89 

Stirring 

Speed (rpm) 
200-500 200-500 300-400 300-400 

Maximum 

Temperature 

(°C) 

230 230 210 200 

Average 

Temperature 

(°C) 

178 177 174 172 
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Then, in Table 22 we listed the comparison of optimization indicators in real time 
was summarized as indicators as process time, %yield, agitation speed, max 
temperature and the average temperature 

As a comparison between control system that we get from Chapter 4 without 

gradient selection of sensor and adaptive control with gradient selection,  

 

 

 

 

 

 

 

 

 

Figure 34 Barchart of real-time optimization mode indicator vs yield 

 

We have summarized the optimization parameter in bar chart for real-time 

optimization mode as measurement of yield shown in Figure 34 that adaptive 

control with selection sensor has higher yield of production. 

 

 

 

 

 

 

 

 

 

Figure 35 Barchart of real-time optimization mode indicator vs process time 

 

In Figure 35 has shown the optimization parameter as process time that 

adaptive control with sensor selection as a result the adaptive control with sensor 

selection has lower process time. It means the performance of adaptive control with 

sensor selection was faster or better.  

 

 

 

 

 

 

 

 

 

 

Figure 36 Barchart of real-time optimization mode indicator vs average 

temperature in reactor 

150

160

170

180

190

200

210

Adaptive Control Adaptive Control With Selection Sensor

A
v
er

ag
e 

T
em

p
er

at
u
re

 i
n
 

R
ea

ct
o

r(
⁰C

)

Real Time Optimization Mode



57 

 

 
 

In Figure 36 has shown the average temperature in reactor in real-time 

optimization mode. The adaptive control with sensor selection has lower average 

temperature, it means for the adaptive control with sensor selection increase the 

efficiency on energy consumption.  

From all that three parameters, adaptive control with selection sensor 

successfully achieve improvement in all aspects. 

 

Conclusion 

        This research presents a new RTO system of esterification oleic acid with 

glycerol using infrared sensors. As the result of this research, we have presented an 

abstraction for conceptual model optimization process in real time with BPMN 2.0 

to ensure the implementation of RTO. For adaptive selection, mid-IR sensors work 

using gradient value minimum at 1.6 with 10 second time interval, followed by 

SVM and state control with three states, has achieved a good performance. For 

system validation, RTO shows that the responsiveness of control increased product 

yield up to 14% and reduced the required process duration in range up to 20 

minutes, with an effective range of stirrer rotation set in range between 300 to 400 

rpm and process temperature at 200°C to 210°C. For scaling up recommendation 

of the current research, it is necessary to improve the quality of sensor component 

materials and related control for apparatus integration. 
 



7 A PROPOSAL FOR SCALING UP MODELING FOR A 

BATCH ESTERIFICATION PROCESS WITH REAL TIME 

OPTIMIZATION 

Abstract 
 

Scale-up process is an essential task in industrial development activities. 

Scaling up conversion for esterification batch processing is needed to approach the 

real production stage while it is still necessary for running in optimizing mode 

especially for the process time in larger scale of pilot plant. This proposal addressed 

the opportunity and potential of current research achievements such as real time 

monitoring, real time adaptive control and real time adaptive control with gradient 

selection for scaling up purposes. The objectives are to propose a formulation for 

scaling up process that a pseudo first order rate model was previously used and to 

find a conceptual and physical design for scaling up esterification process into a 

pilot-plant level. These objectives was achieved by developing the studies on 

existing laboratory scale in batch esterification process supported with Real Time 

Optimization (RTO) based on an empirical scale-up methods. This proposal are 

divided the scale-up as in conceptual and physical design. The conceptual scale-up 

plan were based on knowledge from system implementation in real-time data to 

ensure feasibility of temperature and mid-IR as inputs measurement. Next, a 

physical design model that was constructed with Stateflow, which was supported 

by data classification Support Vector Machine (SVM) was included in the model 

by using three types of implemented electrical transformer. These methods makes 

the proposed model are suitable for scaling up esterification in batch system with 

real-time data acquisition which was supported with a microcontroller. Finally, the 

design set of control using three types of activator that represented by transformer 

in the scale-up plan was proposed. 

 

Introduction 
 

The increasing global competition, push each companies in the processing 

industries sectors to face an intense, incremental pressure to improve production 

efficiency and product quality by scaling up the process (Caygill 2006).  

Esterification product was needed incrementally as high demand for various raw 

material that used in industrial sector (Pardi 2005). For the cheap oil sources contain 

high FFA like crude glycerol, the esterification step is usually required in order to 

convert that raw material to get the derivative product (Bail et al. 2012).  
As these background of research above, to scale up the esterification process 

was needed immediately to fulfill the industrial purpose level. The scale-up of 

chemical processes, particularly those involving batch or semi-batch manufacturer, 

is a well-known problem in area of engineering development (Trevor 2010). It is 

not possible to build a plant without supporting calculations, studies, and 

demonstrations of its functioning at a smaller operating scale (Bisio 1985). For 

years, scale-up has been a sort of art in which expertise, rules of thumb, trial and 

error, and particular solutions have been implemented to obtain a proper result at a 
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new operating scale, batch processing is considered to be important in the chemical 

industry, mainly when low production volumes or a great variety of products within 

a single process unit are required (Fernandez 2012).  

In the previous chapter was described that state of the art in RTO industrial 

applications for batch system has been investigated by Darby et al. (2011) and 

Mansour and Ellis (2008).  They identified the system that was run in batch process, 

it means the materials are loaded, the process is initiated, and as the reactions are 

completed, the products are removed. This proposal addressed the opportunity and 

potential of current research achievements such as real time monitoring, real time 

adaptive control and real time adaptive control with gradient selection for scaling 

up purposes. Generally, in this proposal we focused on the scale-up problems that 

was implemented with an advanced control system using RTO as requirements in 

higher volume and variable of reaction was controlled in real time.  

Based on above motivations and challenges, the objectives in this proposal 

are to formulate the optimization in scale up process using pseudo-homogeneous 

model was used to describe the kinetics of oleic acid esterification and to find a 

conceptual and physical design for scaling up esterification process.  

To fulfill the objectives and limitation above, as a first step of our methods, 

a formulation for the esterification scale-up based on mathematical and 

computation knowledge with assumption that the esterification reaction was 

proceeds as a pseudo first order rate that means the catalyst not involved in reaction 

(Geng et al. 2012) and from Chacuat et al. (2009) that stated an assumption for both 

internal and external mass transfer resistances can be omitted for most reactions in 

the presence of MESA catalysts. Next, implemented the basic principle of scaling-

up as previous research from Bentolila (2013) which is using data collection from 

bench-scale laboratory equipment and exploit the data by design commercial-scale 

process configuration.  From the research by Harmsen (2013) that the empirical 

scale-up method is often employed for polymerizations and fermentations in 

mechanically stirred vessels and the reactors are batch or fed-batch operated, in our 

case in esterification we also implemented this method in identical process. Next, 

with the flow of knowledge based on basic knowledge and laboratory experiments 

used to build the optimization model that the principal of optimality was used, the 

ideas was obtained to implement in pilot or industrial scale (Donati and Paludetto 

1997). The control model was developed with knowledge generation in 

achievement in real time measurement using mid-IR sensors and real time adaptive 

control with gradient adaptive that deployed the model in Stateflow (Mathworks 

2014) supported by clustering with computational intelligence from achievement in 

real time adaptive control, that finding the best control set for the scale-up process 

using voltage converter to control the heater within DC phase and AC phase power 

(Ramirez 2001) using multi clusters. Finally, the design set of control using three 

types of activator that represented by transformer in the scale-up plan was proposed. 

 

Methods 

 

 To design the model of scale-up of esterification process we have several 

stages as framework, first we have formulation for the RTO as process and 

parameter for laboratory scale in optimum to implement the principle of optimality 
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CONCEPTUAL DESIGN PHYSICAL DESIGN 

for scaling-up, next the conceptual design was proposed and finally the physical 

design was proposed in detail. 

 

   

 

 

 

 

 

 

 

 

 

Figure 37 Basic stages in analysis and design for scaling up  

(Modified from Bentolila 2013) 

 

As shown in Figure 37 the conceptual design block was based on analysis in 

laboratory scale an design of requirement for RTO which has similar process and 

parameter. Next, the physical design was proposed as a pilot scale and then for 

industrial scale for the next development. 

  

Optimization of scale-up formulation 

 In this research, we defined the optimization for scale up esterification 

problems was minimizing time which it was necessary for setting the optimal 

control parameter in scale up to satisfy the requirements of process as a pseudo first 

order rate in assumption as in Real-time optimization using gradient adaptive 

selection of infrared sensors for glycerol esterification was formulated in Equation 

26. 

Objective function:      min tf(C,T,R)          (26)  

where decision variables are    C: concentration of Monooleic(%) 

      T: temperature used (°C) 

      R: reactor stirrer (rpm) 

 

             subject to                        150°𝐶 ≤ 𝑇 ≤ 190°𝐶 

150 𝑟𝑝𝑚 ≤ 𝑅 ≤ 300 𝑟𝑝𝑚 
 

              boundary                                 𝑡 ∈ [0, 𝑡𝑓]      t: time of esterification 

 

Conceptual Design 

In this research, the conceptual design was based on data collection from 

bench-scale laboratory equipment and exploit the data by design commercial-scale 

process configuration (Bentolila 2013) as detailed in Figure 38, the process and 

parameter was found from analysis and design using laboratory scale with 

implemented RTO. Next, from that laboratory scale we are increasing the volume 

to pilot plant. For further development in final stages would be used to scale up for 

industrial production.  

ANALYSIS
Laboratory Bench Scale

DESIGN
Real Time Optimization 

PILOT SCALE INDUSTRIAL SCALE

PROCESS &
PARAMETER

FINAL DEVELOPMENT
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The process and parameter for scale up was used from current achievement 

in our research in Chapter 3 page 16 that has result from real time simulation with 

SO that supported with sensors, has succesfully increase the volume of production 

up to 17% and process duration reduction by 36 minutes in pilot plant scale with 

stirring speed 300rpm to 450rpm and reduced average temperature that used in the 

reactor. 

 This conceptual stages also supported with research by Donati and Paludetto 

(1997) that stated the models contained all physical, chemical and disturbance 

effected on the performance of the process and the basic knowledge generated from 

laboratory scale experiments that have been implemented excellently and repeated 

ideas to implement in industrial unit or pilot unit.  

BASIC 
KNOWLEDGE

LAB 
EXPERIMENTS

OPTIMIZATION 
MODEL

SCALE UP 
IDEAS

PILOT SCALE

INDUSTRIAL 
SCALE

 
Figure 38 Knowledge flow for scaling up  

(Modified from Donati and Paludetto 1997) 

 

As shown in Figure 38 the flow was started with basic knowledge block that 

related to our research in Chapter 3 that real-time simulation for esterification 

process succeeded to improve the volume of production by implemented mid-IR 

sensor to identify the quality of product with Self Optimization and based on 

Chapter 4 that has successfully implemented the identification of esterification 

stages using three states or cluster with implementation of mid-IR sensors. Next, by 

doing laboratory experiments  for optimization of esterification of oleic acid with 

glycerol in SBRC, we combined with basic knowledge block that we obtained in 

Chapter 4 in application of mid-IR sensors, we have  developed the optimization 

model block in minimization process time that discussed in Chapter 5 with 

optimization model using real-time adaptive control that has an improvement for 

clustering the data from sensor  and optimization model in maximization of yield 

in Chapter 6 that implemented a gradient adaptive selection to improve the 

precision of identification from infrared sensors. As the result of our experiments 

using application of RTO with adaptive selection sensors has successfully increased 

the yield up to 14%. Finally, from these model optimization block we want to 

implement the scale-up ideas to develop in pilot and industrial scale. 

 

Physical Design  
For physical design in scaling up of esterification process, we proposed the 

model measurement aspect as a complete steady state model of the reactor using 

the kinetics and mass transfer behavior built in the laboratory which predicts all of 

the design parameters and the input from sensors. Those aspects has several 

differences such as volume, temperature in reactor, stirrer speed, process time, 

control parameter and response of control. Especially in control activator with the 

same control parameter that we has implemented in laboratory scale we has design 
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the model for scale up. The esterification process was designed at different stirring 

speeds of 300, 400, 500 and 600 rpm in a reactor with volume 25L, under the same 

reaction parameters of 65°C and 100°C, and reaction time range between 200 and 

240 minutes.  

In this chapter we started from analysis the esterification process as we have 

achivement in research from Chapter 3 using BPMN 2.0 diagrams that has different 

swimlane between SO and NCO operation from our current achivement in RTO 

with adaptive clustering in Chapter 5 and next development with gradient adaptive 

selection sensor in Chapter 6.  

 

Table 24 Regression for scale up process 

Volume (L) Temperature (ᵒC) Process Time(minutes)  

1 210 100  

5 200 120  

10 210 130  

25 172 205 Extrapolated 

 

The design of RTO with scaling up was used assumption the process and 

parameter was have same characteristic between laboratory bench scale and scaling 

up system as empirical scale up method (Harmsen 2013). In Table 23 for volume 

25L was extrapolated for process time predictions for 205 minutes. This model of 

requirements hopefully run smoothly and meet the time needed for esterification in 

high capacity production that operated in alternating current power phase for the 

heater as shown in Appendix 4. 

 

 

ASPECT  LABORATORY-SCALE  SCALE-UP 

VOLUME (L) 1 25 

TEMPERATURE (°C) 200-240 150-190 

RATE OF AGITATION 

(RPM) 

200-400 150-300 

CATALYST MESA  MESA 

PROCESS TIME 

(minutes) 

105-120 205-210 

CONTROL 

PARAMETER 

TEMPERATURE & 

AGITATION RATE 

TEMPERATURE & 

AGITATION RATE 

CONTROL 

ACTIVATOR 

SERVO ON 

POTENTIOMETER 

DIGITAL SELECTOR 

POWER SWITCH 

RESPONSE OF 

CONTROL 

SLOW in 

TEMPERATURE 

VERY SLOW in 

TEMPERATURE 

Microcontroller  Arduino Uno  Arduino Mega 

Figure 39 Scale-up measurement planning model 

In Figure 39 we described the same control parameter and catalyst, for different 

aspects as process time, control activator and response of control from laboratory 

scale to scale up for pilot plant. To control the design parameters of scale-up model, 

we propose certain several aspects as available in pilot plant at SBRC as listed  

physical design has conversion from laboratory scale that apparatus of esterification 

V= -71+0.2T+0.3P 
R2=1 
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process consists of heater and magnetic strirrer, condensation tube, sensor and 

microcontroller Arduino to execute the control of RTO.  

   
 

 

 

 

 

 

 

Figure 40 Proposed diagram of physical scale-up conversion apparatus for pilot 

plant 

 

In Figure 40 we have conversion diagram of apparatus in identically for 

scale-up system. In this conversion we defined a reactor with heater and stirrer in 

pilot plant was represented the magnetic stirrer and heater in laboratory scale. For 

another apparatus such as condensation tube and beaker glass was converted to 

condensation pipe and distillation tank as detailed. The sensors in proposed system 

has three types of wavelength that connected to Arduino. This proposed system has 

discussed completely in Chapter 4 and Chapter 5 especially for optimization in 

esterification of oleic acid with glycerol. 

The physical design for scaling up with controlled the temperature and 

stirrer speed as optimization has discussed in Chapter 6 to meet up the requirement 

of scale up which has difference from laboratory scale such as volume, stirrer speed, 

power and control of heater 

 

StateFlow simulation 

To simulate the control parameter that was related to process parameter in 

scale up, we used simulator software Stateflow® (Mathworks 2014). Stateflow® is 

an environment for modeling and simulating combinatorial and sequential decision 

logic based on state machines and flow charts. Stateflow lets us to combine 

graphical and tabular representations, including state transition diagrams, flow 

charts, state transition tables, and truth tables, to model how your system reacts to 

events, time-based conditions, and external input signals. The Stateflow includes 

state machine animation and static and run-time checks for testing design 

consistency and completeness before implementation.  
 
 

 

 

 

 

 

Figure 41 Stateflow model for controlling the reactor heater in pilot scale 

ARDUINO
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In Figure 41, with Stateflow, we have designed logic for adaptive control in 

esterification process in heater block diagram as an on/off function that supported 

with three state of control. 

Physical Scale-up Control 

In this chapter, a new system for scaling up control with real-time 

optimization using microcontroller and voltage converter (Ramirez 2001) were 

proposed. As functional requirement to select the three control states of temperature 

based on our previous research, we design a control system using three units of 

transformers that were set at different power, that connected to voltage converter 

block to meet the design requirement for supply the specific energy rate from 

alternating current phase to the heater in the reactor as physical requirement. In 

esterification reactor block in this design the three types of mid-IR sensor and 

temperature sensor named thermocouple were used. The sensor for measuring 

stirrer speed that not stated in esterification reactor block because we were still not 

found a sensor that operate able in high temperature and high pressure as condition 

in the reactor. 

As contributions of current achievement in real-time monitoring, real-time 

adaptive control and real-time optimization using gradient adaptive selection of 

infrared sensors for glycerol esterification that succeeded to implement as 

conceptual and physical scale up. In this chapter, we have designed the scale-up 

models based on functional requirement that using real-time data to ensure 

feasibility of the inputs based on temperature and mid-IR measurement as the 

implementation of RTO method by using microcontroller in scale-up.  

 

Figure 42 Diagram of proposed physical scale-up control 

As shown in Figure 42 A physical design model that the control activator of the 

heater was constructed with Stateflow, which was supported by data classification 

Support Vector Machine (SVM) was included in the model by using 2000W 220 V 

AC SCR Power Regulator which was supported with a microcontroller that 

connected to a digital input of SCR (Shandilya 2016). 

As seen in above description and discussion, our previous achievements 

hassled to novel effort in constructing higher level of production approach into pilot 
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plant scale. These achievement led to some advantages in case of increasing yield 

of production, reducing time in esterification process and lower average 

temperature in reactor, it means increased the efficiency of process.  

This scale up level will also be beneficial for industrial purposes by enabling 

critical point previously unknown or partially understood well in terms of real-time 

operations and related issue. 

Yet there are some disadvantages which had limited contributions to 

enhance a real completed operations such as these system needed a sensor with high 

specification and operate able in high temperature and high pressure to put them in 

the reactor especially for mid-IR sensor and rotation sensor. All these disadvantages 

are among potential future research to solve. 

 

Conclusion 

 

A formulation the optimization in scale up process using pseudo-

homogeneous model was described for the kinetics of oleic acid esterification and 

a conceptual and physical design for scaling up esterification process was found. 

By support of design requirement that was simulated the control state with 

Stateflow and implemented the opportunity and potential of current research 

achievements such as real time monitoring, real time adaptive control and real time 

adaptive control with gradient selection. In scale up system in real situation to meet 

the physical requirement, it is essential to set up the control that interfaced with 

alternating power phase. A voltage converter to operate the control between DC 

and AC phase was used. Finally, the design set of control using three types of 

activator that represented by transformer in the scale-up plan was proposed. From 

our research that remaining requirements to handle in the future work is to find the 

sensor for measure the rotation speed of the stirrer. The reactor also should be 

insulated perfectly from surrounding environment as to increase the efficiency of 

energy used. 
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8 CONCLUSION AND RECOMMENDING REMARKS 

 

Conclusion  
 

The modeling of a real time simulation model of the production system of glycerol 

esterification with self-optimization was developed with discrete simulation and contributes 

to support the production system of GMO. The analysis of the model was described for lower 

level process detailed in BPMN 2.0 diagram. The experiments of real-time simulation 

showed that the evaluation of the proposed parameter such as temperature between at range 

of 2400C to 2600C, and volume at range 25L to 30L for each batch. 

The system of real-time monitoring glycerol esterification process was built with 

mid-IR sensors classifying with SVM contributes to support the identification esterification 

status in every minute and to get information for the time needed for the esterification 

process. This esterification status achieved a good performance when classifying into three 

statuses: initialize, on process and finish as tested with ROC 

As a new approach for optimization process esterification of oleic acid with glycerol 

was developed using method Relief which is feature selection, worked well to select the 

sensors at specified time intervals and adaptive Pillar k-means data clustering algorithm to 

determine the set control parameters like temperature and rotational speed of stirrer in real 

time adaptive control with three sets of cluster control. 

The best performance of this research was found in real-time optimization with an 

adaptive control and sensors selection with gradient measurement supported with 

classification, was improved as the responsiveness of control increased product yield up to 

14% and reduced the duration of process up to 20 minutes, with an effective range of stirrer 

rotation set between 300rpm to 450rpm and process temperature in reactor between 200°C 

until 210°C. 

We also proposed the scale-up models based on implementation system using real-

time data to ensure feasibility of the inputs based on temperature and mid-IR measurement 

using a control system with microcontroller.  

   

Recommending remarks 
 

According to the existing disadvantages, in optimization subject, there are still some 

gaps to fill for the real-time aspect, especially in real time measurement and control for the 

parameter that is related to optimization, to reduce time span needed for data processing 

supported with computational intelligence, as well as sensor development that can be 

operated in several wavelengths by adjusting the voltage and high temperature environment. 

Future work will be best devoted to the extension of proposed approaches to more complex 

reaction schemes, e.g. reactions characterized by second-order kinetics. Also, the integration 

of the proposed model-based within sensors and control device using a universal 

approximation for the estimation of the model uncertainties supported with another 

computational data mining is currently the subject of investigation. 



APPENDIX 

Appendix 1 Photo of reactor with sensor attached 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2 Photo of Arduino microcontroller 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix 3 Photo of real-time optimization system 

 

 Appendix 4 Photo of existing reactor scale-up controller  

 

 

 

 

 

 

 

 

 

 



Appendix 5 Datasets of attribute parameter for quality control 

 

Number 

Water 

(%) 

x1 

Viscosity 

(poise) 

x2 

Free 

Glycerin 

(%)      

x3 

pH 

 

x4 

Purity     

(%)             

x5 

Rel. 

Density  

x6 

Quality 

Pass 

 

1 0.5 0.0548 3 4 72 1.01 NO 

2 0.1 0.0543 1 4 63 0.98 NO 

3 0.4 0.0549 3 3 88 1 YES 

4 0.3 0.0523 1 3 84 0.96 NO 

5 0.5 0.0535 3 5 86 0.96 NO 

6 0.4 0.0546 3 4 69 0.97 NO 

7 0.2 0.0536 3 4 69 0.98 NO 

8 0.2 0.052 1 5 69 1.01 NO 

9 0.2 0.0549 2 4 90 0.98 YES 

10 0.1 0.0529 1 4 70 1.01 NO 

11 0.1 0.051 2 4 81 1.02 YES 

12 0.4 0.0543 2 3 71 1.01 NO 

13 0.2 0.0526 3 4 83 0.96 YES 

14 0.2 0.0519 2 4 62 1.02 NO 

15 0.1 0.0513 3 5 78 0.96 YES 

16 0.4 0.0523 1 5 72 0.95 NO 

17 0.2 0.0518 1 5 71 1.02 NO 

18 0.4 0.0516 3 5 74 1.01 NO 

19 0.3 0.0529 3 5 72 1 NO 

20 0.1 0.0547 2 3 82 1.01 YES 

21 0.4 0.0531 2 5 61 1 NO 

22 0.4 0.054 1 4 82 0.96 YES 

23 0.3 0.0523 3 3 74 1.01 NO 

24 0.5 0.0547 1 5 83 0.97 YES 

25 0.4 0.0538 3 4 84 0.95 YES 

26 0.2 0.0523 2 5 61 1 NO 

27 0.1 0.0517 3 5 75 0.98 NO 

28 0.2 0.0535 2 3 69 0.98 NO 

29 0.5 0.0522 2 3 70 0.97 NO 

30 0.2 0.0545 3 4 90 1.01 YES 

 

 

 

 

 



 

Appendix 6 Sample of data using 3 sensor in real time 

    

Time  Sensor 3.4μm  Sensor 5.5μm  Sensor 7μm  

(Second) (Value) (Value) (Value) 

193 5 40 10 

194 8 38 9 

195 6 38 5 

196 5 35 7 

197 7 30 9 

198 8 39 8 

199 7 34 10 

200 5 38 6 

201 6 40 7 

202 7 40 6 

203 5 34 7 

204 7 32 8 

205 8 33 7 

206 8 38 6 

207 5 39 6 

208 8 34 9 

209 9 32 10 

210 8 36 9 

211 11 37 5 

212 8 37 8 

213 11 30 7 

214 8 34 9 

215 8 34 10 

216 10 33 6 

217 8 32 7 

218 8 30 10 

219 12 36 6 

220 8 35 8 

221 12 34 7 

222 11 37 7 

223 12 31 9 

224 9 36 9 

225 12 31 5 

226 11 33 6 



Appendix 7 Sample of data using 2 sensor in real time 

Time  Sensor 3.4μm  Sensor 5.5μm  Esterification 

(Minutes) (Transmittance) (Transmittance) Status 

30 8 32 Initialization 

31 8 30 Initialization 

32 12 36 Initialization 

33 8 35 Initialization 

34 12 34 Initialization 

35 11 37 Initialization 

36 12 31 Initialization 

37 9 36 Initialization 

38 12 31 Initialization 

39 11 33 Initialization 

60 9 32 Work On Process 

61 10 30 Work On Process 

62 8 35 Work On Process 

63 9 34 Work On Process 

64 10 35 Work On Process 

65 12 35 Work On Process 

66 11 37 Work On Process 

67 11 38 Work On Process 

68 10 31 Work On Process 

69 8 37 Work On Process 

70 8 31 Work On Process 

71 8 33 Work On Process 

72 9 33 Work On Process 

73 12 34 Work On Process 

74 12 38 Work On Process 

75 8 35 Work On Process 

76 12 32 Work On Process 

77 9 37 Work On Process 

78 12 37 Work On Process 

79 9 38 Work On Process 

80 8 32 Work On Process 

81 10 40 Work On Process 

82 11 35 Work On Process 

83 12 38 Work On Process 

84 11 36 Work On Process 

85 10 37 Work On Process 



Time  
(Second) 

Sensor 3.4μm  
(Transmittance) 

Sensor 5.5μm  
(Transmittance) 

Esterification 
Status 

86 9 37 Work On Process 

87 8 36 Work On Process 

88 10 38 Work On Process 

89 12 30 Work On Process 

90 9 39 Work On Process 

91 8 40 Work On Process 

92 12 31 Work On Process 

93 8 39 Work On Process 

94 12 37 Work On Process 

95 8 40 Work On Process 

96 12 36 Work On Process 

97 9 37 Work On Process 

98 12 36 Work On Process 

99 11 30 Work On Process 

100 8 30 Work On Process 

101 9 34 Work On Process 

102 12 36 Work On Process 

103 10 37 Work On Process 

104 12 33 Work On Process 

105 11 39 Work On Process 

106 9 31 Work On Process 

107 11 38 Work On Process 

108 11 31 Finishing 

109 8 37 Finishing 

110 9 40 Finishing 

111 9 39 Finishing 

112 8 32 Finishing 

113 10 34 Finishing 

114 12 38 Finishing 

115 10 31 Finishing 

116 11 31 Finishing 

117 10 35 Finishing 

118 9 39 Finishing 

119 8 40 Finishing 

120 11 39 Finishing 

121 9 34 Finishing 

122 8 40 Finishing 

123 8 36 Finishing 

 



Appendix 8 Arduino code 

// the setup routine runs once when you press reset: 

#include <Servo.h>  

Servo myservo; 

 

const int ledPin1 = 13;       // pin that the LED is attached to 

const int ledPin2 = 12; 

const int threshold1 = 50;   // an arbitrary threshold level that's in the range of the analog 

input 

const int threshold2 = 60; 

// ThermoCouple 

int thermo_gnd_pin = 6; 

int thermo_vcc_pin = 5; 

int thermo_so_pin  = 4; 

int thermo_cs_pin  = 3; 

int thermo_sck_pin = 2; 

   

void setup() { 

  { 

  myservo.attach(9);  // attaches the servo on pin 9 to the servo object 

} 

  pinMode(12, OUTPUT); 

  // initialize serial communication at 9600 bits per second: 

  Serial.begin(9600); 

  Serial.println("CLEARDATA"); 

  Serial.println("LABEL,Time,Sensor1 ,Sensor2 ,Sensor3,Temperature, State 

Temperature,State Agitation"); 

  pinMode(thermo_vcc_pin, OUTPUT);  

  pinMode(thermo_gnd_pin, OUTPUT);  

  digitalWrite(thermo_vcc_pin, HIGH); 

  digitalWrite(thermo_gnd_pin, LOW);} 

 

// the loop routine runs over and over again forever: 

void loop() { 

  // read the input on analog pin 0: 

  Serial.print(("DATA,TIME, ")); 

  int sensorValue1 = analogRead(A0); 

  int sensorValue2 = analogRead(A1); 

  int sensorValue3 = analogRead(A2); 

  int sensorValue4 = analogRead(A3); 

  int kalibrasi1=sensorValue1*(100.0/1023.0); 

  int kalibrasi2=sensorValue2*(100.0/1023.0); 

  int kalibrasi3=sensorValue3*(100.0/1023.0); 

  int kalibrasi4=sensorValue4*(100.0/1023.0); 



   

  char* state_temperature; 

  char* state_agitation; 

   

   if (kalibrasi1 < 30 and kalibrasi3 < 30 ) { 

    digitalWrite(ledPin1, HIGH);state_temperature="1";state_agitation="1";  

  } 

  else { 

    digitalWrite(ledPin1,LOW);state_temperature="2";state_agitation="3"; 

  } 

  if (kalibrasi1 > 50 and kalibrasi2>60 ) { 

    digitalWrite(ledPin1, LOW);state_temperature="3";state_agitation="3"; }  

    

  // print out the value you read: 

  Serial.print(Calibration#1); 

  Serial.print(","); 

  Serial.print(Calibration#2); 

  Serial.print(","); 

  Serial.print(Calibration#3); 

  Serial.print(",");  

  Serial.print(Calibration#4); 

  Serial.print(","); 

  Serial.print(state_temperature); 

  Serial.print(","); 

  Serial.print(state_agitation); 

  Serial.print(","); 

  Serial.println(); 

   

       delay(1000);        // delay in between reads for stability 

} 
 



Appendix 9 GCMS test for esterified glycerol with temperature 2100C-90 minutes process time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 .0 0 1 0 .0 0 1 5 .0 0 2 0 .0 0 2 5 .0 0 3 0 .0 0

2 0 0 0 0 0 0

4 0 0 0 0 0 0

6 0 0 0 0 0 0

8 0 0 0 0 0 0

   1 e + 0 7

 1 .2 e + 0 7

 1 .4 e + 0 7

 1 .6 e + 0 7

 1 .8 e + 0 7

   2 e + 0 7

 2 .2 e + 0 7

 2 .4 e + 0 7

 2 .6 e + 0 7

 2 .8 e + 0 7

   3 e + 0 7

 3 .2 e + 0 7

 3 .4 e + 0 7

 3 .6 e + 0 7

 3 .8 e + 0 7

T im e -->

A b u n d a n c e

T IC : G L IS E R O L  E S T E R .D \d a ta .m s

 4 .1 1 7
 9 .9 9 2

1 4 .6 3 6
1 5 .8 5 7
1 5 .9 9 3

1 6 .3 2 2

1 6 .9 1 7

1 7 .0 2 5

1 8 .9 7 3

1 9 .0 4 3

1 9 .4 2 3

1 9 .7 1 91 9 .7 7 4

2 2 .1 5 8

2 2 .2 3 6

2 3 .8 2 1

2 3 .9 7 3

2 5 .0 5 5

22.158 Monoolein      73.75% 

19.423 Monopalmitin 11% 

16.322 Monolinolein  12% 

Other substance           3% 



Appendix 10 GCMS test for esterified glycerol with temperature 2100C-120 minutes process time 

5 .0 0 1 0 .0 0 1 5 .0 0 2 0 .0 0 2 5 .0 0 3 0 .0 0

2 0 0 0 0 0 0

4 0 0 0 0 0 0

6 0 0 0 0 0 0

8 0 0 0 0 0 0

   1 e + 0 7

 1 .2 e + 0 7

 1 .4 e + 0 7

 1 .6 e + 0 7

 1 .8 e + 0 7

   2 e + 0 7

 2 .2 e + 0 7

 2 .4 e + 0 7

 2 .6 e + 0 7

 2 .8 e + 0 7

   3 e + 0 7

 3 .2 e + 0 7

 3 .4 e + 0 7

 3 .6 e + 0 7

 3 .8 e + 0 7

T im e -->

A b u n d a n c e

T IC : G L IS E R O L  E S T E R _ 2 .D \d a ta .m s

 7 .4 5 0

1 4 .6 4 3

1 5 .0 9 4

1 5 .8 6 2

1 6 .3 2 6

1 6 .4 7 6
1 6 .5 6 91 7 .3 1 91 8 .4 7 2

1 8 .9 8 9

1 9 .0 5 5

1 9 .4 3 9

2 2 .2 5 6

2 2 .7 3 42 3 .8 4 7

2 3 .9 9 9

 

 

22.256 Monoolein      89.75% 

19.439 Monopalmitin 5% 

16.326 Monolinolein  3% 

Other substance          2% 



Appendix 11 FTIR test for non esterified and esterified glycerol with temperature 2100C-120 minutes process time 
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