
Applying a Pix2Pix Generative Adversarial Network to a 
Fourier-domain Optical Coherence Tomography System for 

Artifact Elimination

Journal: IEEE Access

Manuscript ID Draft

Manuscript Type: Regular Manuscript

Date Submitted by the 
Author: n/a

Complete List of Authors: Huang, Chun-Ming; National Formosa University, Electronic Engineering
Wijanto, Eddy; National Formosa University, Electro-Optical Engineering
Cheng, Hsu-Chih; National Formosa University, Electro-Optical 
Engineering

Keywords: <b>Please choose 
keywords carefully as they 

help us find the most suitable 
Editor to review</b>:

Biomedical image processing, Biomedical optical imaging, Computational 
and artificial intelligence

Subject Category<br>Please 
select at least two subject 

categories that best reflect 
the scope of your manuscript:

Biomedical Engineering, Computational and artificial intelligence, 
Imaging

Additional Manuscript 
Keywords:

Artifacts, Fourier Domain Optical Coherence Tomography, Pix2Pix 
Generative Adversarial Network, Image-to-Image Translation

 

For Review Only

IEEE Access



 

VOLUME XX, 2021                                                                                                                                                                                                                                                                            1 
 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2020.Doi Number 

Applying a Pix2Pix Generative Adversarial 
Network to a Fourier-domain Optical Coherence 
Tomography System for Artifact Elimination 

Chun-Ming Huang1, Eddy Wijanto2, and Hsu-Chih Cheng2 
1Department of Electronic Engineering, National Formosa University, Yunlin 632, Taiwan, R.O.C. 
2Department of Electro-Optical Engineering, National Formosa University, Yunlin 632, Taiwan, R.O.C. 

Corresponding author: Hsu-Chih Cheng (e-mail: chenghc@nfu.edu.tw). 

The authors gratefully acknowledge the financial support provided by the Ministry of Science and Technology, Taiwan under grants MOST 108-2221-E-

150-041 and MOST 107-2218-E-150 -008 -MY2. 

ABSTRACT The presence of artifacts, including conjugate, DC, and auto-correlation artifacts, is a critical 

limitation of Fourier-domain optical coherence tomography (FD-OCT). Many methods have been proposed 

to resolve this problem to obtain high-quality images. Furthermore, the development of deep learning has 

resulted in many prospective advancements in the medical field; image-to-image translation by using 

generative adversarial networks (GANs) is one such advancement. In this study, we propose applying the 

Pix2Pix GAN to eliminate artifacts from FD-OCT images. The first experiment results showed that the 

proposed framework could translate conventional FD-OCT depth profiles into artifact-free FD-OCT depth 

profiles. In addition, the FD-OCT depth profile and optical distance of translated images matched those of 

ground truth images. Second experiment verified that the proposed GAN-based FD-OCT can be applied to 

generate artifact-free FD-OCT image with different parameters of sample refractive index, the front surface 

of the sample toward the zero-delay position, and the physical thickness of the sample. Third experiment 

proved that the proposed model could translated the conventional FD-OCT depth profiles with additional 

Gaussian noises source image into artifacts-free FD-OCT and successfully relieved the noise. 

INDEX TERMS Artifacts, FD-OCT, image-to-image translation, Pix2Pix GAN 

I. INTRODUCTION 

Optical coherence tomography (OCT) is an optical imaging 

modality used to obtain high-resolution cross-sectional 

tomographic images of the internal microstructures of 

materials and biological systems. OCT is a noninvasive 

imaging modality that produces images by using 

backscattered or back-reflected light. Compared with 

conventional ultrasound, it can provide higher-resolution 

images at higher magnitudes and has been widely used for 

diagnosing ocular diseases. In general, OCT can be classified 

into two categories: time-domain OCT (TD-OCT) and 

Fourier-domain OCT (FD-OCT). In FD-OCT, as the signal-

to-noise ratio increases in proportional to the number of 

detection elements, the imaging speed and sensitivity 

considerably increase significantly. Nevertheless, in a 

traditional FD-OCT system, since the acquired 

interferometric signal only represents the real component of a 

complex waveform, the complex conjugate mirror image is 

symmetrical to the zero-delay depth. Consequently, because 

the FD-OCT system is more sensitive around the zero-delay 

line, imaging is performed by positioning the zero-delay line 

at the region of interest in a sample to obtain double-depth 

range images. Sanjay et al. [1] used spectral-domain OCT 

(SD-OCT) to examine patients diagnosed as having 

glaucoma and reported that 15.2%–36% of scans showed 

artifacts that may cause difficulty to physicians in the 

analysis of images. A study identified various types of 

artifacts that can lead to an incorrect diagnosis [2]. Because 

artifacts can obscure imaging results and prevent the 

detection of critical features in a sample structure, full-range 

FD-OCT is commonly implemented using phase shifting to 

reconstruct the sample structure and overcome this complex 

artifact problem. Full-range FD-OCT images are obtained by 

recording several interferograms with different phase 

relations. Jiewen et al. [3] proposed a five-frame variable 

phase-shifting (FVP) method to reduce the effects of 

polychromatic errors. Compared with the traditional five-
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frame invariant phase-shifting method, the FVP method 

could significantly improve the quality of OCT images with a 

factor of 1.7 for the suppression of complex conjugate 

artifacts (CCAs). In our previous studies, we proposed 

another method for artifact suppression that utilized 

orthogonal polarized light for phase shifting to improve the 

speed of image scanning and remove unwanted components 

[4],[5]. The simulation results of our previous study showed 

that two FD-OCT interferograms could be simultaneously 

obtained along with orthogonal polarization components [4]. 

The benefits of this method were also reported in our further 

study based on the experimental observation [5]. 

Furthermore, another study reported that applying an 

orthogonal interferometer to a nondestructive dimensional 

metrological system resulted in high speed, high precision, 

and an ultra-long range [6]; moreover, suppression ratios of 

80 dB for direct current (DC) and 60 dB for mirror images 

could be achieved using this method. Using an ultra-

broadband light source to achieve the sinusoidal vibration of 

a mirror, Qiukun et al. [7] obtained a series of spectral 

interferograms with different phase delays that resulted in the 

elimination of CCAs. This postprocessing method was also 

beneficial for increasing the quality of OCT images. Gangjun 

et al. [8] evaluated two methods to align interferograms 

affected by trigger jitter to reduce residual fixed-pattern 

noise. The first method involved using a wavenumber shift 

(k-shift) in the interferograms of interest and searching for 

the k-shift that minimized the fixed-pattern artifact, whereas 

the second method involved using relative k-shift and the 

phase information at the residual fixed-pattern noise location. 

To remove or reduce artifacts, another study proposed a 

postprocessing method [9] that involved using a correction 

factor extracted from a pre-reconstructed tomogram. 

Distinguishable morphological features of the sample surface 

could be detected using this method. 

FD-OCT imaging results are highly sensitive to the effects 

of system instability and environmental noise. This limitation 

can be resolved using the one-shot phase-shifting method 

based on a reference wavefront tilting technique. A previous 

study [10] proposed an achromatic phase-shifting method in 

which a linear polarizer and a quarter-wave plate were used 

to generate circularly polarized light in the reference arm. 

This method could produce fringe-free OCT images in a 

single shot. However, this method required phase calibration 

and was hampered by wavelength dispersion effects. Another 

study proposed an FD-OCT design with two phase-shifted 

interference fringes that were simultaneously obtained from 

two orthogonally polarized lights and processed using the 

image reconstruction algorithm [11]. This proposed FD-OCT 

design [11] could produce one-shot images by using a fixed 

apochromatic quarter-wave retarder rather than a rotating 

polarizer and a mechanical scan. Furthermore, in our 

previous study, we used one-shot full-range FD-OCT that 

had a noise elimination feature to measure the thickness and 

refractive index of samples [12]. The proposed method in 

[12] provided full-range and one-shot measurements with 

twice the maximal depth position. 

Deep learning (DL) has revolutionized artificial 

intelligence (AI), and it has solved many complex problems 

related to AI. DL models are composed of multiple layers, 

where each layer is connected to its lower and upper layers 

through different weights. The capability of DL models to 

learn hierarchical features from various types of data makes 

them useful for solving many problems, including those 

encountered in medical imaging. Sripad et al. [13] proposed 

a DL framework to denoise a single-frame OCT B-scan of an 

optic nerve head (ONH) that provided the advantages of 

decreased scanning times and minimal patient discomfort. 

The quantitative measurements of the DL method showed an 

improvement in the mean signal-to-noise ratio, mean 

contrast-to-noise ratio, and mean structural similarity index. 

In addition, the DL method was used to extract capillary-

level angiograms from a single OCT volume [14] and detect 

retinal nerve fiber layer segmentation errors on SD-OCT 

[15]. Further DL role in medical imaging was showed in [16] 

for automated age-related macular degeneration (AMD) 

detection by utilizing support vector machine (SVM), 

AlexNet, GoogLeNet, and Inception-ResNet for AMD 

detection while a block-matching and 3-Dimension filter 

(BM3DF), a hybrid median filter (HMF), and an adaptive 

wiener filter (AWF) were used to denoise the OCT images. 

The results reported in [16] indicated that by considering the 

trade-offs between the computation time and detection 

accuracy, AlexNet achieves a high detection accuracy with 

low computation time. 

In 2014, a generative adversarial network (GAN) was 

developed by Goodfellow as a deep-learning-based 

generative model [17]. The GAN consists of two parts: the 

generator that learns to generate plausible data, and the 

discriminator that learns to distinguish the generator’s fake 

data from real data. In the training process, the generator 

produces fake data, and the discriminator attempts to 

discriminate between real and fake data. The GAN has 

shown remarkable results in various tasks such as image 

generation, image translation, super-resolution imaging, and 

face image synthesis. Haris et al. [18] proposed a single 

process that could be used to remove both noise and retinal 

shadows from unseen single-frame B-scans within a short 

time by using the GAN. Another study used GAN to remove 

shadows from OCT images, thereby correcting blood vessel 

shadows in the OCT images of the ONH [19]. In the absence 

of clean images for training, Guo et al. in [20] proposed 

nonlocal-GAN method for 3D OCT image denoising. The 

experiment results proved the superiority of the proposed 

methods compare to other denoising approaches while 

retaining more useful details and clearer layer structures. 

Further work proposed by Huang et al. in [21] with 

disentangled representation GAN (DRGAN) by utilizing 

noise and content disentanglement of an OCT image. The 

noisy image was disentangled into content and noise spaces 
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FIGURE 1.  Conventional full-range FD-OCT architecture. 

by corresponding encoders, and then the generator will 

predict the denoised OCT image through these extracted 

content features. The qualitative and quantitative results from 

the experiments presented that the proposed method is 

superior to the other conventional methods. GAN also can be 

utilized for style transfer, namely noise adaptation GAN 

(NAGAN) proposed by Zhang et al. in [22]. In the proposed 

scheme, one generator and two discriminators were used for 

the noise style transfer. The experiment results verified that 

the noise styles were transferred while maintaining the 

contents. The application of NAGAN for OCT showed that 

the noise style transfer is able to improve the segmentation 

and classification task, both in OCT and ultrasound images, 

respectively. Furthermore, in a previous study [23], a GAN 

was implemented with conditional adversarial networks, 

known as cGAN, to obtain a general-purpose solution. This 

model can be used to solve various image translation 

problems. 

In this study, the Pix2Pix GAN, as a component of a cGAN 

framework [23], was applied to the one-shot and full-range 

FD-OCT system to eliminate artifacts, including conjugate, 

DC, and auto-correlation artifacts, by using the image-to-

image translation mechanism. The Pix2Pix GAN was trained 

to learn how to translate a conventional FD-OCT depth 

profile generated from inverse fast Fourier transform (IFFT) 

signal processing into an artifact-free FD-OCT depth profile 

without the requirement of complicated equipment. The 

proposed Pix2Pix GAN–based FD-OCT system has a simple 

design and relatively low cost.  

The remainder of this paper is organized as follows. 

Section II describes the conventional FD-OCT architecture 

and artifact problems in the FD-OCT system along with 

image-to-image translation by using the Pix2Pix GAN. 

Section III presents the experimental results and a discussion 

of them. Finally, Section IV provides concluding remarks 

and suggestions for future studies. 

 
II. PIX2PIX GAN–BASED FULL-RANGE FD-OCT 

In this study, we propose a simplified FD-OCT scheme by 

using Pix2Pix GAN–based image-to-image translation to 

remove unwanted artifacts. 

A. Conventional full-range FD-OCT 

FD-OCT systems are based on the measurement of the 

interference spectrum, either in space on a spectrometer or in 

time during the wavelength sweep of a rapidly tunable laser 

source. Figure 1 depicts the architecture of the conventional 

full-range FD-OCT system implemented in this study to 

create the dataset. This system consists of a super 

luminescent diode (SLD), a 2 × 2 coupler, two collimators, a 

reference mirror, and an optical spectrum analyzer (OSA) 

that are used to obtain OCT spectra. The SLD, a broadband 

low-coherence light source, is distributed to the sample and 

reference arm through the coupler. In the sample arm, the 

beam is directly delivered to the sample, and then scattered 

and reflected into a collimator. In the reference arm, the 

probing beam is incident on a mirror. Let parameter n1 

represents the refractive index of the sample, d0 indicates the 

front surface of the sample toward the zero-delay position, 

and d1 denotes the physical thickness of the sample. Light 

emerging from the mirror passes back to the coupler in the 

reference arm. Beams from the reference and sample arms 

are recombined in the coupler and then passed to the OSA. 

Subsequently, the received spectra use the IFFT method for 

signal processing.  

The inverse Fourier transform of the intensity signal is 

given in [24]: 
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FIGURE 2. Pix2Pix GAN-based FD-OCT system. 

TABLE I 

DEVICES COMPARISON 

Devices Method 

Conventional Full-

Range FD-OCT 

Pix2Pix GAN-

Based FD-OCT 

Hardware Polarization Plate Standard Computer 

Beam Splitter GPU with 11 GB of 

DRAM Quarter-Wave Plate 

Mirror 

Collimator 

Software - Open-Source 

Python 

Open-Source 

TensorFlow 
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where k is the wavenumber, ID(k) is the photocurrent,  is the 

responsivity of the detector (A/W), S(k) is the power spectral, 

zR indicates the distance from the beam splitter or fiber 

coupler to the reference reflector, zs represents the path length 

variable in the sample arm measured from the beam splitter, 

and RR and RS denote the power reflectivity of the reference 

reflector and each reflector in the sample arm, respectively. 

From (1), the photocurrent can be divided into three 

components. The first term is called the DC component, and 

its amplitude is proportional to the power reflectivity of the 

reference mirror added to the sum of sample reflectivity. The 

DC component has the largest amplitude of the detector 

current and is an artifact in OCT. The second item is the 

desired component of OCT, which is the cross-correlational 

component of each sample reflector. The last component is 

an autocorrelation part, which is also an artifact in OCT, 

caused by the interference between different sample 

reflectors. In addition, a conjugate artifact, also called a 

mirror artifact, is another type of artifact found in OCT. This 

artifact occurs because the detected interferometric spectrum 

is real, whereas inverse Fourier transform of the spectral 

shows Hermitian symmetry. In other words, it’s positive and 

negative distances are the complex conjugates of each other. 

Therefore, if they are real, they must be identical [24].  

In OCT systems, the axial resolution is determined by the 

coherence length of the light source and defined using the 

Rayleigh criterion. The axial resolution of the OCT system 

can be expressed as follows: 
2

00.44
2

clz



 = =


                               (2) 

where lc is the coherence length of the light source, 0 is the 

central wavelength of the light source, and  is the 

bandwidth.  

The maximal depth position Zmax was determined according 

to the OSA wavelength resolution and is given as follows: 
2

0

max

1
.

4
Z




=                                 (3) 

where  is the OSA wavelength resolution. 

Assume that the central wavelength of the light source is 

1550 nm and the full width at half maximum of the spectrum 

is 20 nm. By using (2), the value of axial resolution can be 

calculated as approximately 52.86 μm. 

B. Pix2Pix GAN–based FD-OCT 

To eliminate these artifacts by using simple and cost-

effective methods, we propose applying the Pix2Pix GAN to 

the FD-OCT system to obtain an artifact-free FD-OCT depth 

profile, as shown in Figure 2. The Pix2Pix GAN is a general 

approach for image-to-image translation. It is a type of a 

conditional GAN, where the generation of the output image 

is conditional on the input image [25]. Compared with other 

GAN models, the conditional GAN has the capability of 

generating large high-quality images for a variety of image 

translation tasks. Therefore, the Pix2Pix GAN has been 

widely used to train a deep convolutional neural network and 

generates data that is similar to real data.   

Table I presents the devices required for the conventional 

FD-OCT method proposed in our previous work [5] and the 

proposed Pix2Pix GAN-based FD-OCT. The conventional 

FD-OCT method consist of two polarization plates, one 

beam splitter, one quarter-wave plate, two mirrors, and two 

collimators. Meanwhile, the proposed Pix2Pix GAN-based 

FD-OCT is computationally inexpensive and can be run on 

standard computers without the need of complex and 

expensive optical equipment, verified the cost-effective 

feature of the proposed system. The software used in the 

proposed system is the open-source framework. 
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                                                   (a)                                                                                                                          (b) 

                      
                                                                (c)                                                                                                                        (d) 

FIGURE 3. Sample of the FD-OCT dataset. (a) Conventional FD-OCT depth profile (b) 2D conventional FD-OCT image (c) Artifact-free FD-OCT depth 

profile (d) 2D artifact-free FD-OCT image. 

The dataset used for training the Pix2Pix GAN was 

generated by implementing conventional full-range FD-

OCT and contained many pairs of images. Each pair of 

images included an original image and its expected 

transformed result. In other words, we used the Pix2Pix 

GAN to translate a conventional FD-OCT depth profile into 

an artifact-free FD-OCT depth profile. First, the 

conventional FD-OCT depth profiles were generated using 

(1) with different parameters. Subsequently, the 

corresponding artifact-free FD-OCT depth profiles were 

obtained using the phase-shifting algorithm proposed in our 

previous study [4]. However, as shown in Figure 3 (a) and 

(c), these conventional and artifact-free FD-OCT depth 

profiles were all contained one-dimensional (1D) data, 

which could not be directly fed to the Pix2Pix GAN. To 

solve this problem, without the loss of generality, we 

expanded these 1D FD-OCT depth profiles into two-

dimensional (2D) images by duplicating original 1D data. 

Assume that the size of the conventional (or artifact-free) 

FD-OCT depth profile is 1 × N, where N denotes sampling 

points. Subsequently, raw data were copied and expanded 

to an N × N FD-OCT image (i.e., Figure 3 (b) and (d)). In 

addition, the brightness of lines inside the corresponding 

2D image was proportional to the intensity of the FD-OCT 

depth profile. 

Page 5 of 35

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

VOLUME XX, 2021                                                                                                                                                                                                                                                                            6 
 

 
FIGURE 4. Pix2Pix GAN architecture. 

Figure 4 shows the Pix2Pix GAN architecture used in this 

study where n denotes the batch size and s is the stride. The 

discriminator was based on a PatchGAN model, which 

classified patches of an image as real or fake by outputting a 

matrix of values as the output instead of a single value. The 

advantage of using this model was that it provided sharp 

high-frequency details and the number of parameters could 

also be reduced. Source and target images (i.e., the 2D 

conventional and artifact-free FD-OCT images, respectively) 

were provided to the discriminator to determine whether the 

target was real or fake. 

The generator had a U-shaped network architecture, which 

added skipped connections between each central symmetric 

layer to prevent the loss of small information. The generator 

was used an encoder–decoder network composed of the 

standardized blocks of convolutional, batch normalization, 

dropout, and activation layers. The generator was trained 

through adversarial loss and updated through L1 loss that was 

measured between the generated image and the expected 

output image. This additional loss drove the generator model 

to create plausible translations of the source image. Overall, 

the generator was updated through a weighted sum of both 

adversarial and L1 losses. To achieve this simultaneous 

training, the logical or composite model was used to stack the 

generator on top of the discriminator. A source image was 

provided as the input to the generator and discriminator. In 

addition, the output of the generator was provided to the 

discriminator as the plausible image. The discriminator then 

predicted the likelihood of an image being real or fake, thus 

translating the source image. The objective of the proposed 

model is expressed as follows [19]: 

( ) ( ) ( )( )( ),, log , log 1 ,GAN x y xL G D E D x y E D x G x = + −    
      (4) 

where x is the source image, and y is the corresponding target 

image, set as the ground truth for x. In (4), the generator G 

attempted to minimize this objective in response to an 

adversarial discriminator D that attempted to maximize it, 

where the results are optimized as follows: 

( )* arg min max ,GAN
G D

G L G D=                      (5) 

where G* is the resulting optimized generator. 

The L1 loss from the generated and expected output images 

can be evaluated as follows: 

             
                      (a)                                                          (b)                                                           (c)                                                            (d) 

FIGURE 5. Image translation results for Pix2Pix GAN–based FD-OCT. 
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FIGURE 6. The 1D artifact-free FD-OCT depth profile after 100 epochs. 

( ) ( ), 1
1 x yL G E y G x = −

 
                       (6) 

The final objective of the proposed model can be denoted 

as follows: 

( ) ( )* arg min max , 1GAN
G D

G L G D L G= +                 (7) 

To train the discriminator, batches of real and fake images 

are required. The corresponding discriminator of the real 

image is given the label of class = 1 to indicate that they are 

real, whereas the corresponding discriminator of the fake 

image is given the label of class = 0 to indicate that they are 

fake. 

In this experiment, we used the 2D FD-OCT image dataset 

for both training and validation. The objective of image 

translation was to convert 2D conventional FD-OCT images 

into 2D artifact-free FD-OCT images. Both the training and 

validation datasets contained 1,000 images each. Both 2D 

conventional FD-OCT images and 2D artifact-free FD-OCT 

images were in JPEG format with an image being 600 pixels 

wide and 600 pixels high.  

The model was trained using the Keras DL framework on a 

personal workstation with an NVIDIA GeForce RTX 2080 

Ti graphics processing unit with 11 GB of memory. Each 

image was loaded and paired between a 2D conventional FD-

OCT image and a 2D artifact-free FD-OCT image. For 

computational purposes, the datasets were downscaled to 

images that were 256 pixels wide and 256 pixels high. The 

arrays of the datasets were saved in compressed NumPy 

array format. The discriminator model was optimized using 

the Adam optimizer with a learning rate of 0.0002 and a beta 

of 0.5 and by implementing the binary cross entropy loss 

function. The generator model applied different activation 

functions for the encoder and decoder network. Because 

small (negative) value will be induced in the down-sampling 

model, Leaky ReLU was used in the encoder network (down-

sampling) to prevent the “dead ReLU” problem. However, 

for the decoder network (up-sampling), RELU activation 

function still work well and have the advantages of faster 

performance and introduce more non-linearity [17], [26]. For 

the output layer, tanh activation function was implemented to 

normalized the output in the range of [-1,1] since the range of 

the brightness/value of each pixel of real image should be 

within [-1,1]. For weight initialization, a random normal with 

a standard deviation of 0.02 was applied [27]. 

GAN models typically do not converge; therefore, an 

equilibrium was found between the generator and 

discriminator models; that is, the image quality was used to 

choose the best model. To examine the quality of the 

translated image, the model was saved to an H5 formatted 

file every 10 training epochs and used later to generate 

image-to-image translations. The total number of epochs was 

set to 100. The results may have varied due to the stochastic 

nature of the algorithm in terms of differences in the 

numerical precision. 

 

 

III.  RESULTS AND DISCUSSION 

In this section, we present the experimental results of the 

proposed Pix2Pix-GAN based FD-OCT model. The model 

was trained with training dataset of 1,000 images. Test 

images were chosen randomly from the validation dataset 

with 1,000 images. The results were observed every 10 

epochs by using the saved model to generate translated 

images. Three experiments were conducted with the trained 

model.  

First experiment aims to prove the feasibility of the Pix2Pix 

GAN-based FD-OCT. Figure 5 displays the source, 

translated, and target images (i.e., the ground truth image) of 

FD-OCT, respectively. The indices of Sxx, Cj, DC, R1 and R2 

indicate the auto-correlation artifact, conjugate artifact, DC 

artifact, first and second peaks of FD-OCT, respectively. The 

source, translated, and target images denote the 2D 

conventional FD-OCT image, 2D artifact-free FD-OCT 

image produced using the Pix2Pix GAN, and real 2D 

artifact-free FD-OCT image, respectively. Our purpose was 

to translate 2D conventional FD-OCT images into 2D 

artifact-free FD-OCT images. From the translated images, we 

observed that the proposed model could translate the input 

FD-OCT image into the desired result. The FD-OCT depth 

profile of the translated image was the same as that of the 

target image. Figure 5 (b) reveals that some background 

noise was still present after 10 training epochs. However, 

after 100 training epochs, the translated image was clearer 

and approaching the target image, as shown in Figure 5 (c).  

To verify the optical distance of the FD-OCT image, we 

reduced the dimension of the translated image to obtain the 

corresponding 1D FD-OCT depth profile, as shown in Figure 

6. The first and second peaks of the FD-OCT depth profile 

(R1 and R2) obtained from the translated image matched those 

of the FD-OCT depth profile obtained from the target image 

(i.e., −1.0007 and 2.0155, respectively). Note that since the 

Pix2Pix-GAN generates image in RGB mode, the black color 
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(a) 

 
(b) 

 
FIGURE 7. Loss of GAN-based FD-OCT system. (a) Discriminator loss (b). 

Generator loss. 

TABLE III 

FD-OCT IMAGE PARAMETER 

                               Type 

     A、C                     B、D 

n1 

d0 

d1 

       1.5                          2.5 

    -500µm                  -500µm 

   2,000µm               1,200µm 

 

 
 

 

    
FIGURE 8.  The target image and translated results for 2D conventional FD-

OCT image of type A source image. 

  

   
FIGURE 9.  The target image and translated results for 2D conventional FD-

OCT image of type B source image. 

of the translated image is not truly black, cause an average 

bias about 60 in the intensity. Table II lists the optical 

distances of R1 and R2 for both translated and target images. 

The performance of the discriminator and generator models 

was recorded for each iteration. Figure 7 shows the 

discriminator loss for real images (blue), discriminator loss 

for generated fake images (orange), and the generator loss for 

generated fake images (green) for 100,000 iterations. 

Discriminator loss for real and fake samples is about the 

same at around 1.0 and loss for the generator is higher. This 

result indicates the stable GAN with normal loss during the 

training process.  

Further experiments are conducted without re-train the 

network and used the same weight obtained from previous 

training. The objective of image translation is to convert 2D 

conventional FD-OCT images into 2D artifact-free FD-OCT 

images. Four types of images are constructed by using the 

hyper-parameters in Table III and their specifications are 

described as follows:  

1. Type A: one of the 2D conventional FD-OCT images 

from the validation dataset. 

TABLE II 
OPTICAL DISTANCE OF FD-OCT 

                 Optical Distance (mm) 

        R1                          R2 

Translated Image 

Target Image 

    -1.0007                  2.0155 

    -1.0007                  2.0155 
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FIGURE 10.  The 1D translated and target artifacts-free FD-OCT depth profiles of type A image. 

               
FIGURE 11.  The 1D translated and target artifacts-free FD-OCT depth profiles of type B image. 

2. Type B: a 2D conventional FD-OCT image, which 

possess the same d0 with type A, whereas n1 and d1 are 

different.  

3. Type C: the hyper-parameters are the same as type A, but 

random Gaussian noise with SNR of 0 (or 3 dB) is added 

on the power spectra form OSA. 

4. Type D: the image is constructed by adding random 

Gaussian noise on the power spectra from OSA with 

SNR of 0 dB (or 3 dB) to type B image. 

Note that all these four types of images are not included in 

the training dataset. 

Second experiment applied the images of types A and B to 

verify the capability of the proposed Pix2Pix GAN-based 

FD-OCT model in reconstructing 2D artifact-free FD-OCT 

images of unknown 2D conventional FD-OCT images. Note 

that we also utilized the phase-shift algorithm (PSA) in [4] to 

reconstruct these test images for comparison. Since these 

images are not included in the training dataset, to avoid 

confusion, these images are names as PSA-based FD-OCT 

images in the rest of this study. 

Figures 8 and 9 show the target image and translated results 

for 2D conventional FD-OCT image of types A and B, 

respectively. It has been shown that the model could translate 

the source image into a 2D artifact-free FD-OCT image, 

which is the same as the PSA-based FD-OCT image. 

Moreover, to confirm the optical distance of the translated 

image, these 2D images are converted to the 1D FD-OCT 

depth profiles by reducing the dimension. Figures 10 and 11 

show the 1D translated and target artifacts-free FD-OCT 

depth profiles of types A and B, respectively.   

For type A, the first peak (R1) and second peak (R2) of the 

FD-OCT depth profile from the translated image matched 

those of the target image (−0.4933 and 2.5228), respectively. 

Meanwhile, for type B, the first peak (R1) and second peak 
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                                           (a)                                                                            (b)                                                                           (c)   
 

    
                                          (d)                                                                             (e)                                                                             (f)   
 

FIGURE 12.  The 1D FD-OCT depth profiles and 2D images of the type C source images of SNR 0 dB, PSA-based FD-OCT image, and Pix2Pix GAN-

based FD-OCT image. 

TABLE IV 

FD-OCT OPTICAL DISTANCE COMPARISON 

                 Optical Distance (mm) 

        R1                          R2 

Type A  

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.5228 

Type B 

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.4947 

 

 
 

 

(R2) of the FD-OCT depth profile from the translated image 

matched those of the target image, (−0.4933 and 2.4947), 

respectively. The second peak represented a small error but 

was in the acceptable range. The optical distance of R1 and R2 

both for translated and target images are shown in Table IV. 

In order to prove that the proposed Pix2Pix GAN-based 

FD-OCT can eliminate the artifacts of FD-OCT image with 

more complex noisy, the third experiment used the images 

from the validation images of types C and D. 

 Figure 12 presents the 1D FD-OCT depth profiles and 2D 

images of the type C source image of SNR 0 dB, PSA-based 

FD-OCT image and Pix2Pix GAN-based FD-OCT image, 

respectively. As shown in Figure 12 (a) and (d), it can be 

observed that there are a lot of noises in the source image, 

except the artifacts. Figure 12 (b) and (e) depict the results of 

PSA-based FD-OCT, where noises still exist expect for the 

peaks of FD-OCT. Further, Figure 12 (c) and (f) show the 

translated image using the Pix2Pix GAN-based FD-OCT 

method. It has been shown that the artifacts and noises are 

almost eliminated, and only an acceptable small noise-floor 

remains in the image. Figure 13 depicts the 1D FD-OCT 

depth profiles and 2D images of the type C source image of 

SNR 3 dB, PSA-based FD-OCT image and Pix2Pix GAN-

based FD-OCT image, respectively. From Figure 13 (a) and 

(d), we can observe that much noises appear in the source 

image. Figure 13 (b) and (e) display the results of PSA-based 

FD-OCT, which still have noises in addition to the FD-OCT 

peaks. Figure 13 (c) and (f) present the translated image 

using the Pix2Pix GAN-based FD-OCT method, where 

artifacts are removed and only a low acceptable noise-floor 

remains. These results verify that the proposed Pix2Pix 

GAN-based FD-OCT can effectively remove the artifacts 

and other noises in the resulted artifacts-free FD-OCT image. 

Compare to the PSA in [4], the proposed Pix2Pix GAN-

based FD-OCT achieves superior results.  
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(a) (b) (c) 

   
(d) (e) (f) 

FIGURE 13.  The 1D FD-OCT depth profiles and 2D images of the type C source images of SNR 3 dB, PSA-based FD-OCT image, and Pix2Pix 

GAN-based FD-OCT image. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

FIGURE 14.  The 1D FD-OCT depth profiles and 2D images of the type D source images of SNR 0 dB, PSA-based FD-OCT image, and Pix2Pix 

GAN-based FD-OCT image. 
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                                          (a)                                                                             (b)                                                                          (c)   

      
                                          (d)                                                                             (e)                                                                          (f)   
 

FIGURE 15.  The 1D FD-OCT depth profiles and 2D images of the type D source images of SNR 3 dB, PSA-based FD-OCT image, and Pix2Pix GAN-

based FD-OCT image. 

 

TABLE V 
FD-OCT OPTICAL DISTANCE COMPARISON 

                 Optical Distance (mm) 

        R1                          R2 

Type C 0 dB SNR 

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.5228 

Type C 3 dB SNR 

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.5228 

 

 
 

 

TABLE VI 

FD-OCT OPTICAL DISTANCE COMPARISON 

                 Optical Distance (mm) 

        R1                          R2 

Type D 0 dB SNR 

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.5228 

Type D 3 dB SNR 

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.5228 

 

 
 

 

Table V presents the optical distance of R1 and R2 for type C 

source image of SNR 0 dB (or 3 dB) reconstructing by using 

PSA-based FD-OCT and Pix2Pix GAN-based FD-OCT 

method, respectively. It can be observed that the first peak 

(R1) and second peak (R2) of the FD-OCT depth profile 

reconstructed by the Pix2Pix GAN-based FD-OCT are the 

same as that of PSA-based FD-OCT. 

Figures 14 and 15 depict the 1D FD-OCT depth profiles 

and 2D images of the type D source images of SNR 0 dB and 

3 dB, PSA-based FD-OCT image and Pix2Pix GAN-based 

FD-OCT image, respectively. It has been shown that a lot of 

noises are accompanied with the source image. The PSA-

based FD-OCT can remove the artifacts, but still much 

noises exist except for the FD-OCT peaks. In addition, the 

proposed Pix2Pix GAN-based FD-OCT can eliminate the 

artifacts and effectively reduce the noise power. Similarly, 

the optical distance of R1 and R2 for type D source image of 

SNR 0 dB and 3 dB are respectively reconstructed by using 

PSA-based FD-OCT and Pix2Pix GAN-based FD-OCT 

method, as shown in Table VI. The values of R1 and R2 of the 

FD-OCT depth profile reconstructed from the Pix2Pix GAN-

based FD-OCT and the PSA-based FD-OCT are the same.  

Table VI shows the optical distance of R1 and R2 from type 

D both for translated image from Pix2Pix GAN and target 

images. For with 0 dB SNR, the first peak (R1) and second 

peak (R2) of the FD-OCT depth profile from the translated 

image matched those of the target image (−0.4933 and 
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2.5228), respectively. Furthermore, for type D with 0 dB 

SNR, the first peak (R1) and second peak (R2) of the FD-OCT 

depth profile from the translated image matched those of the 

target image, (−0.4933 and 2.5228), respectively.  

 
IV.  CONCLUSION 

In this study, one Pix2Pix GAN-based FD-OCT is proposed 

to eliminate the artifacts of FD-OCT images, including 

conjugate, DC, and auto-correlation artifact. Four types of 

2D conventional FD-OCT images (i.e., types A to D) are 

constructed to verify the reconstructing capability of model. 

The first two experiment results show that the proposed 

Pix2Pix GAN-based FD-OCT can reconstruct the 1D FD-

OCT depth profile and 2D artifact-free FD-OCT images as 

well as the phase-shift algorithm-based FD-OCT system. 

Further, at the last experiment, additional Gaussian noise of 

SNR 0 dB and 3 dB are respectively added to the power 

spectral to generate noisier 2D conventional FD-OCT images 

(i.e., types C and D) for testing the model. From the results, it 

can be observed that the proposed model can effectively 

remove the artifacts and other noises in the resulted artifacts-

free FD-OCT image. In addition, the proposed Pix2Pix 

GAN–based FD-OCT has advantages of simple design and 

relatively low cost. Our future work will focus on how to 

apply this model to more complex FD-OCT depth profile 

structure.  
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Original Manuscript ID: Access-2021-12071  

Original Article Title: “Applying a Pix2Pix Generative Adversarial Network to a Fourier-domain Optical 
Coherence Tomography System for Artifact Elimination” 

 

To: IEEE Access Editor 

Re: Response to reviewers 

 

 

 

Dear Editor, 

 

Thank you for allowing a resubmission of our manuscript, with an opportunity to address the reviewers’ 
comments. 

We are uploading (a) our point-by-point response to the comments (below) (response to reviewers), (b) an 
updated manuscript with yellow highlighting indicating changes, and (c) a clean updated manuscript 
without highlights (PDF main document). 
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Chun-Ming Huang, Eddy Wijanto, and Hsu-Chih Cheng 
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Reviewer#1, Concern # 1: Transforming the 2D conventional FD-OCT images into 2D artifact-free FD-OCT 
images is still a supervised learning problem in essence, and some simple supervised image processing 
models can achieve good results. However, the author chose Pix2Pix GAN specifically, what is the basis of 
the choice? 

Author response:  Thank you for your valuable comment. Since supervised learning requires a large 
amount of labelled data, pre-processing of data is really a big challenge. Besides, image-to-image 
translation is a challenging problem and often requires specialized models and loss functions for a given 
translation task or dataset. For most supervised image processing models, the output image may be blurry 
if the input data is unseen. This is because that the model may try to generate the image by using the 
average value.  

The Generative adversarial network (GAN) is an unsupervised learning algorithm that uses a 
supervised loss as part of the training. In other words, the GAN sets up a supervised learning problem in 
order to do unsupervised learning. It generates fake/random data, and tries to determine if a sample is 
generated fake data or real data. The output image that is generated with the generator network is 
random. However, it might generate images of any object that was there in the dataset. 

The Pix2Pix GAN is a general approach for image-to-image translation. It belongs to one such type 
called conditional GAN (or cGAN), where a target image is generated, conditional on a given input image 
[25]. Compared with other GAN models, the conditional GAN has the capability of generating large high-
quality images for a variety of image translation tasks. Therefore, the Pix2Pix GAN has been widely used to 
train a deep convolutional neural network and generates data that is similar to real data. This is the main 
reason why we choose to apply the Pix2Pix GAN to translate the FD-OCT. 

Author action: We updated the manuscript by enriching the description about Pix2Pix GAN advantages in 
Section II.B on Page 4 and adding reference [25] in Section Reference on Page 14. 

[25] T. Tavolara, M.K.K. Niazi, V. Arole, and W. Chen, W. Frankel, M. Gurcan, “A Modular cGAN 
Classification Framework: Application to Colorectal Tumor Detection,” Sci. Rep., vol. 9, no. 1, pp. 
18969, 2019. Doi: 10.1038/s41598-019-55257-w. 

 

Reviewer#1, Concern # 2: In my opinion, the reason why the method in this paper can achieve good results 
may be that FD-OCT images themselves contain less detailed information. As far as I know, SD-OCT images 
also contain a lot of noise or artifacts. How about applying the author's method to other images? 

Author response:  Thank you for your valuable comment. To the best of the authors knowledge, according 
to [24] in Chapter 5, SD-OCT is also known as FD-OCT, where the reference arm is kept stationary, and the 
depth information is obtained by a Fourier transform of the spectrally resolved interference fringes in the 
detection arm of a Michelson interferometer.  

For clarity, we first rename the original datasets image A and image B to type A and type B, 
respectively. Further, in order to verify the performance of the proposed Pix2Pix GAN-Based FD-OCT 
model, another two datasets based on types A and B are constructed with different Gaussian noise. The 
hyper-parameters for constructing these four types of images are depicted in Table III and their 
specifications are described as follows: 

1. Type A: one of the 2D conventional FD-OCT images from the validation dataset.  
2. Type B: a 2D conventional FD-OCT image, which possess the same d0 with type A, whereas n1 and d1 

are different. 
3. Type C: the hyper-parameters are the same as type A, but random Gaussian noise with SNR of 0 (or 3 

dB) is added on the power spectra from OSA. 
4. Type D: the image is constructed by adding random Gaussian noise on the power spectra from OSA 

with SNR of 0 dB (or 3 dB) to type B image. 
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Note that all these four types of images are not included in the training dataset. 
In the second experiment, we randomly select images from the validation dataset (type A) and type B 

as the input sources of the trained Pix2Pix-GAN based FD-OCT model to verify the performance of the 
model. Experiment results show that and the proposed method has the capability to reconstruct the 2D 
artifact-free FD-OCT images from the 2D conventional FD-OCT images, which are not included in the 
training dataset. 

In order to prove that the proposed Pix2Pix GAN-based FD-OCT can eliminate the artifacts of FD-OCT 
image with more complex noisy, the third experiment used the images from the validation dataset of types 
C and D. This experiment was done without re-training and used the same weight that obtained from 
previous training. From the experiment results, it has been shown that the artifacts and noises are almost 
eliminated, and only an acceptable small noise-floor remains in the image. In addition, the first peak (R1) 
and second peak (R2) of the FD-OCT depth profile from the translated image matched those of the target 
image. 

In addition, to increase the clarity of Section III, some parts have been rewritten as follows: 

 

In this section, we present the experimental results of the proposed Pix2Pix-GAN based FD-OCT 
model. The model was trained with training dataset of 1,000 images. Test images were chosen randomly 
from the validation dataset with 1,000 images. The results were observed every 10 epochs by using the 
saved model to generate translated images. Three experiments were conducted with the trained model.  

First experiment aims to prove the feasibility of the Pix2Pix GAN-based FD-OCT. Further experiments 
are conducted without re-train the network and used the same weight obtained from previous training. 
The objective of image translation is to convert 2D conventional FD-OCT images into 2D artifact-free FD-
OCT images. Four types of images are constructed by using the hyper-parameters in Table III and their 
specifications are described as follows: 
1. Type A: one of the 2D conventional FD-OCT images from the validation dataset.  
2. Type B: a 2D conventional FD-OCT image, which possess the same d0 with type A, whereas n1 and d1 

are different. 
3. Type C: the hyper-parameters are the same as type A, but random Gaussian noise with SNR of 0 (or 3 

dB) is added on the power spectra from OSA. 
4. Type D: the image is constructed by adding random Gaussian noise on the power spectra from OSA 

with SNR of 0 dB (or 3 dB) to type B image. 
Note that all these four types of images are not included in the training dataset. 

 

Author action: We updated the manuscript by adding the results and discussions from additional 
simulations (Figure 12, 13, 14, 15 and Table V, VI) in Section III on Page 10-12. The Abstract and Conclusion 
section were adding with the additional simulation results on Page 1 and 13, respectively. Some parts have 
been rewritten in Section III on Page 7-9. 

 

Reviewer#1, Concern # 3: In this paper, the author did not compare the effect of the proposed method 
with some existing methods, so it is impossible to understand the superiority of the algorithm proposed by 
the author. 

Author response: Thank you for your constructive comment. In the additional simulation that tested with 
type C and D data, Gaussian noises with SNR of 0 dB (or 3 dB) were added to the images. Note that we also 
utilized the phase-shift algorithm (PSA) in [5] to reconstruct these test images for comparison. These results 
show that the noise still existed in the resulted image for type C and D, both for 0 dB and 3 dB SNR, 
respectively. Meanwhile, the proposed Pix2Pix GAN-based FD-OCT method could effectively remove the 
artifacts and noises, resulted in noise and artifacts-free FD-OCT images. From the observations, the 
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proposed Pix2Pix GAN-based FD-OCT method achieves superior performance compare to the PSA-based 
FD-OCT method. 

Author action: We updated the manuscript by adding the results and discussions from additional 
simulations (Figure 12, 13, 14, 15 and Table V, VI) in Section III on Page 10-12. 

[5] H.C. Cheng and M.S. Shiu, "Experimental demonstration of high-speed full-range Fourier domain 
optical coherence tomography imaging using orthogonally polarized light and a phase-shifting 
algorithm," Appl. Opt., vol. 51, pp. 8762-8768, 2012. Doi: 10.1364/AO.51.008762. 

 

Reviewer#1, Concern # 4: The author mentioned in section II.B that the proposed method is cost-effective, 
however, there is no discussion about the cost in the paper. 

Author response: Thank you for your valuable comment. Our previous scheme [5] used orthogonal 
polarized light for phase shifting in order to improve the speed of image scanning and remove the artifacts 
in FD-OCT. However, the proposed architecture required complex and expensive optical instruments, such 
as polarization plate, beam splitter, quarter-wave plate, mirror, and collimator. With the Pix2Pix GAN-based 
FD-OCT proposed in this manuscript, only standard computer with medium computational capability is 
needed along with the open-source software platform, such as Python and TensorFlow, verified the 
simplicity and cost-effective feature of the proposed system.  

Author action: We updated the manuscript by adding the comparison table (Table I) along with the 
discussion about cost-effective feature of the proposed Pix2Pix GAN-based FD-OCT model in Section II.B on 
Page 4. 

 

Reviewer#1, Concern # 5: There are some related works missing in the Introduction part, such as: 

[1] Guo et. al, Unsupervised denoising of optical coherence tomography images with nonlocal-generative 
adversarial network, IEEE Transactions on Instrumentation and Measurement, 2020. 

[2] Huang et. al, Noise-Powered Disentangled Representation for Unsupervised Speckle Reduction of 
Optical Coherence Tomography Images, IEEE Transactions on Medical Imaging, 2020. 

[3] Zhang et. al, Noise Adaptation Generative Adversarial Network for Medical Image Analysis, IEEE 
Transactions on Medical Imaging, 2020. 

Author response:  Thank you for your enriching comment. The related works from your suggestions have 
been added to the Introduction part of the manuscript along with the reference list [20]-[22]. 

In the absence of clean images for training, Guo et al. in [20] proposed nonlocal-GAN method for 3D OCT 
image denoising. The experiment results proved the superiority of the proposed methods compare to other 
denoising approaches while retaining more useful details and clearer layer structures. Further work 
proposed by Huang et al. in [21] with disentangled representation GAN (DRGAN) by utilizing noise and 
content disentanglement of an OCT image. The noisy image was disentangled into content and noise 
spaces by corresponding encoders, and then the generator will predict the denoised OCT image through 
these extracted content features. The qualitative and quantitative results from the experiments presented 
that the proposed method is superior to the other conventional methods. GAN also can be utilized for style 
transfer, namely noise adaptation GAN (NAGAN) proposed by Zhang et al. in [22]. In the proposed scheme, 
one generator and two discriminators were used for the noise style transfer. The experiment results 
verified that the noise styles were transferred while maintaining the contents. The application of NAGAN 
for OCT showed that the noise style transfer is able to improve the segmentation and classification task, 
both in OCT and ultrasound images, respectively. 
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Author action: We updated the manuscript by adding three related references in Section I on Page 2 and 3 
along with the reference list [20]-[22] in Section Reference on Page 13.  

[20] A. Guo, L. Fang, M. Qi, and S. Li, "Unsupervised Denoising of Optical Coherence Tomography Images 
with Nonlocal-Generative Adversarial Network," IEEE T Instrum Meas, vol. 70, pp. 1-12, 2021. Doi: 
10.1109/TIM.2020.3017036.  

[21] Y.Q. Huang, Z.X. Lu, Y. Liu, H. Chen, J.L. Zhou, L.Y. Fang, and Y. Zhang, “Noise-Powered Disentangled 
Representation for Unsupervised Speckle Reduction of Optical Coherence Tomography Images,” IEEE 
Trans Med Imaging, 2020. Doi: 10.1109/TMI.2020.3045207.  

[22] T.Y. Zhang, J. Cheng, H.Z. Fu, Z.W. Gu, Y.T. Xiao, K. Zhou, S.H. Gao, R. Zheng, and J. Liu, “Noise 
Adaptation Generative Adversarial Network for Medical Image Analysis,” IEEE Trans Med Imaging, 
2019. Doi: 10.1109/TMI.2019.2944488. 

 

Reviewer#1, Concern # 6: On page 6, the author chooses different activation functions for different 
models. What I want to know is: what criteria does the author follow to choose these activation functions? 

Author response:  Thank you for your valuable comment. In the Pix2Pix GAN architecture applied in the 
proposed system, the generator implements different activation functions for the encoder and decoder, 
i.e., Leaky Rectified Linear Unit (Leaky ReLU) and Rectified Linear Unit (ReLU), respectively.  

1. Rectified Linear Unit (ReLU) is a type of activation function that is linear in the positive dimension, but 
zero in the negative dimension. The derivative of the ReLU is 1 in the positive part, and 0 in the 
negative part. 

2. Leaky Rectified Linear Unit (Leaky ReLU) is a type of activation function based on ReLU, but it has a 
small slope for negative values instead of a flat slope. The derivative of the Leaky ReLU is 1 in the 
positive part, and is a small fraction in the negative part. 

Since the chain rule in the backward pass, if the derivative of the slope of the ReLU is of 0, no learning is 
performed on the layers below the dead ReLU. Because small (negative) value will be induced in the down-
sampling model, Leaky RELU was used in the encoder network (down-sampling) to prevent the “dead 
RELU” problem. However, for the decoder network (up-sampling), RELU activation function still work well 
and have the advantages of faster performance and introduce more non-linearity [17], [26]. For the output 
layer, tanh activation function was implemented to normalized the output in the range of [-1,1] since the 
range of the brightness/value of each pixel of real image should be within [-1,1].  

Author action: We updated the manuscript by rewriting the part about activation function in order to give 
clear criteria of choosing the activation function in Section II.B on Page 7 and adding reference [26] in 
Section Reference on Page 14.  

[17]  I.J. Goodfellow, J.P. Abadie, M. Mirza, B. Xu, D.W. Farley, S. Ozair, A. Courville, and Y. Bengio, 
“Generative adversarial nets,” arXiv:1406.2661, 2014 [Online]. 

[26]   M. Mehralian and B. Karasfi, "RDCGAN: Unsupervised Representation Learning with Regularized Deep 
Convolutional Generative Adversarial Networks," in Proc. 9th Conference on Artificial Intelligence 
and Robotics and 2nd Asia-Pacific International Symposium, 2018, pp. 31-38. Doi: 
10.1109/AIAR.2018.8769811. 
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Reviewer#1, Concern # 7: There is no explanation of n and s in Figure 4. 

Author response:  Thank you for your valuable comment. The explanation for notation n and s in Figure 4 
has been added where n denotes the batch size and s is the stride. 

Author action: We updated the manuscript by adding the explanation for notation n and s in Figure 4 in 
Section II.B on Page 6. 

 

Reviewer#1, Concern # 8: There is an inconsistency of the symbol of the central wavelength on page 4. 

Author response:  Thank you for your valuable comment. The symbol of the central wavelength on page 4 

for equation (3) already changed to 0 and the redundant of notation explanation for the central 
wavelength in equation (3) was also removed.  

                                                                                    
2

0

max

1
.

4
Z




=                                                                                    (3) 

where  is the OSA wavelength resolution.   
 
Author action: We updated the manuscript by changing the central wavelength symbol and removing the 
redundant notation explanation for the central wavelength in equation (3) in Section II.A on Page 4. 

 

Reviewer#1, Concern # 9: There are many formatting issues that need to be carefully checked, such as the 
font size of the formula, the subscript representation, and so on. 

Author response:  Thank you for your careful inspection and we are sorry for this formatting error. We 
have checked the formatting carefully and made some changes to the formula size along with the notation 
size in equation (1-7). The subscript representation in the Figure 3, 5, 6, 8, 9, 10, and 11 was also updated. 

Author action: We updated the manuscript by changing the font size of formula and notation for equation 
(1-7) in Section II.A on Page 4, Section II.B on Page 6 and 7 along with the subscript representation in the 
Figure 3, 5, 6, 8, 9, 10, and 11 in Section II.B on Page 5 and 6, Section III on Page 7, 8, and 9, respectively.  

 

 

 

Reviewer#2: The authors have used a GAN network with U-shape down sampling and up-sampling 
structure to remove the artifacts in optical coherence tomography. The paper is presented well and the 
proposed approach are discussed in details and the paper have experimental values. I propose acceptance 
for the paper. 

Author response:  Thank you for your thorough review and support for this work. It is our sincere hope that 
this work provides the simple and cost-effective method for artifacts elimination in FD-OCT by applying the 
Pix2Pix GAN.  

 

Note: References suggested by reviewers should only be added if it is relevant to the article and makes it 
more complete. Excessive cases of recommending non-relevant articles should be reported to 
ieeeaccesseic@ieee.org 
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ABSTRACT The presence of artifacts, including conjugate, DC, and auto-correlation artifacts, is a critical 

limitation of Fourier-domain optical coherence tomography (FD-OCT). Many methods have been proposed 

to resolve this problem to obtain high-quality images. Furthermore, the development of deep learning has 

resulted in many prospective advancements in the medical field; image-to-image translation by using 

generative adversarial networks (GANs) is one such advancement. In this study, we propose applying the 

Pix2Pix GAN to eliminate artifacts from FD-OCT images. The first experiment results showed that the 

proposed framework could translate conventional FD-OCT depth profiles into artifact-free FD-OCT depth 

profiles. In addition, the FD-OCT depth profile and optical distance of translated images matched those of 

ground truth images. Second experiment verified that the proposed GAN-based FD-OCT can be applied to 

generate artifact-free FD-OCT image with different parameters of sample refractive index, the front surface 

of the sample toward the zero-delay position, and the physical thickness of the sample. Third experiment 

proved that the proposed model could translated the conventional FD-OCT depth profiles with additional 

Gaussian noises source image into artifacts-free FD-OCT and successfully relieved the noise. 

INDEX TERMS Artifacts, FD-OCT, image-to-image translation, Pix2Pix GAN 

I. INTRODUCTION 

Optical coherence tomography (OCT) is an optical imaging 

modality used to obtain high-resolution cross-sectional 

tomographic images of the internal microstructures of 

materials and biological systems. OCT is a noninvasive 

imaging modality that produces images by using 

backscattered or back-reflected light. Compared with 

conventional ultrasound, it can provide higher-resolution 

images at higher magnitudes and has been widely used for 

diagnosing ocular diseases. In general, OCT can be classified 

into two categories: time-domain OCT (TD-OCT) and 

Fourier-domain OCT (FD-OCT). In FD-OCT, as the signal-

to-noise ratio increases in proportional to the number of 

detection elements, the imaging speed and sensitivity 

considerably increase significantly. Nevertheless, in a 

traditional FD-OCT system, since the acquired 

interferometric signal only represents the real component of a 

complex waveform, the complex conjugate mirror image is 

symmetrical to the zero-delay depth. Consequently, because 

the FD-OCT system is more sensitive around the zero-delay 

line, imaging is performed by positioning the zero-delay line 

at the region of interest in a sample to obtain double-depth 

range images. Sanjay et al. [1] used spectral-domain OCT 

(SD-OCT) to examine patients diagnosed as having 

glaucoma and reported that 15.2%–36% of scans showed 

artifacts that may cause difficulty to physicians in the 

analysis of images. A study identified various types of 

artifacts that can lead to an incorrect diagnosis [2]. Because 

artifacts can obscure imaging results and prevent the 

detection of critical features in a sample structure, full-range 

FD-OCT is commonly implemented using phase shifting to 

reconstruct the sample structure and overcome this complex 

artifact problem. Full-range FD-OCT images are obtained by 

recording several interferograms with different phase 

relations. Jiewen et al. [3] proposed a five-frame variable 

phase-shifting (FVP) method to reduce the effects of 

polychromatic errors. Compared with the traditional five-
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frame invariant phase-shifting method, the FVP method 

could significantly improve the quality of OCT images with a 

factor of 1.7 for the suppression of complex conjugate 

artifacts (CCAs). In our previous studies, we proposed 

another method for artifact suppression that utilized 

orthogonal polarized light for phase shifting to improve the 

speed of image scanning and remove unwanted components 

[4],[5]. The simulation results of our previous study showed 

that two FD-OCT interferograms could be simultaneously 

obtained along with orthogonal polarization components [4]. 

The benefits of this method were also reported in our further 

study based on the experimental observation [5]. 

Furthermore, another study reported that applying an 

orthogonal interferometer to a nondestructive dimensional 

metrological system resulted in high speed, high precision, 

and an ultra-long range [6]; moreover, suppression ratios of 

80 dB for direct current (DC) and 60 dB for mirror images 

could be achieved using this method. Using an ultra-

broadband light source to achieve the sinusoidal vibration of 

a mirror, Qiukun et al. [7] obtained a series of spectral 

interferograms with different phase delays that resulted in the 

elimination of CCAs. This postprocessing method was also 

beneficial for increasing the quality of OCT images. Gangjun 

et al. [8] evaluated two methods to align interferograms 

affected by trigger jitter to reduce residual fixed-pattern 

noise. The first method involved using a wavenumber shift 

(k-shift) in the interferograms of interest and searching for 

the k-shift that minimized the fixed-pattern artifact, whereas 

the second method involved using relative k-shift and the 

phase information at the residual fixed-pattern noise location. 

To remove or reduce artifacts, another study proposed a 

postprocessing method [9] that involved using a correction 

factor extracted from a pre-reconstructed tomogram. 

Distinguishable morphological features of the sample surface 

could be detected using this method. 

FD-OCT imaging results are highly sensitive to the effects 

of system instability and environmental noise. This limitation 

can be resolved using the one-shot phase-shifting method 

based on a reference wavefront tilting technique. A previous 

study [10] proposed an achromatic phase-shifting method in 

which a linear polarizer and a quarter-wave plate were used 

to generate circularly polarized light in the reference arm. 

This method could produce fringe-free OCT images in a 

single shot. However, this method required phase calibration 

and was hampered by wavelength dispersion effects. Another 

study proposed an FD-OCT design with two phase-shifted 

interference fringes that were simultaneously obtained from 

two orthogonally polarized lights and processed using the 

image reconstruction algorithm [11]. This proposed FD-OCT 

design [11] could produce one-shot images by using a fixed 

apochromatic quarter-wave retarder rather than a rotating 

polarizer and a mechanical scan. Furthermore, in our 

previous study, we used one-shot full-range FD-OCT that 

had a noise elimination feature to measure the thickness and 

refractive index of samples [12]. The proposed method in 

[12] provided full-range and one-shot measurements with 

twice the maximal depth position. 

Deep learning (DL) has revolutionized artificial 

intelligence (AI), and it has solved many complex problems 

related to AI. DL models are composed of multiple layers, 

where each layer is connected to its lower and upper layers 

through different weights. The capability of DL models to 

learn hierarchical features from various types of data makes 

them useful for solving many problems, including those 

encountered in medical imaging. Sripad et al. [13] proposed 

a DL framework to denoise a single-frame OCT B-scan of an 

optic nerve head (ONH) that provided the advantages of 

decreased scanning times and minimal patient discomfort. 

The quantitative measurements of the DL method showed an 

improvement in the mean signal-to-noise ratio, mean 

contrast-to-noise ratio, and mean structural similarity index. 

In addition, the DL method was used to extract capillary-

level angiograms from a single OCT volume [14] and detect 

retinal nerve fiber layer segmentation errors on SD-OCT 

[15]. Further DL role in medical imaging was showed in [16] 

for automated age-related macular degeneration (AMD) 

detection by utilizing support vector machine (SVM), 

AlexNet, GoogLeNet, and Inception-ResNet for AMD 

detection while a block-matching and 3-Dimension filter 

(BM3DF), a hybrid median filter (HMF), and an adaptive 

wiener filter (AWF) were used to denoise the OCT images. 

The results reported in [16] indicated that by considering the 

trade-offs between the computation time and detection 

accuracy, AlexNet achieves a high detection accuracy with 

low computation time. 

In 2014, a generative adversarial network (GAN) was 

developed by Goodfellow as a deep-learning-based 

generative model [17]. The GAN consists of two parts: the 

generator that learns to generate plausible data, and the 

discriminator that learns to distinguish the generator’s fake 

data from real data. In the training process, the generator 

produces fake data, and the discriminator attempts to 

discriminate between real and fake data. The GAN has 

shown remarkable results in various tasks such as image 

generation, image translation, super-resolution imaging, and 

face image synthesis. Haris et al. [18] proposed a single 

process that could be used to remove both noise and retinal 

shadows from unseen single-frame B-scans within a short 

time by using the GAN. Another study used GAN to remove 

shadows from OCT images, thereby correcting blood vessel 

shadows in the OCT images of the ONH [19]. In the absence 

of clean images for training, Guo et al. in [20] proposed 

nonlocal-GAN method for 3D OCT image denoising. The 

experiment results proved the superiority of the proposed 

methods compare to other denoising approaches while 

retaining more useful details and clearer layer structures. 

Further work proposed by Huang et al. in [21] with 

disentangled representation GAN (DRGAN) by utilizing 

noise and content disentanglement of an OCT image. The 

noisy image was disentangled into content and noise spaces 
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FIGURE 1.  Conventional full-range FD-OCT architecture. 

by corresponding encoders, and then the generator will 

predict the denoised OCT image through these extracted 

content features. The qualitative and quantitative results from 

the experiments presented that the proposed method is 

superior to the other conventional methods. GAN also can be 

utilized for style transfer, namely noise adaptation GAN 

(NAGAN) proposed by Zhang et al. in [22]. In the proposed 

scheme, one generator and two discriminators were used for 

the noise style transfer. The experiment results verified that 

the noise styles were transferred while maintaining the 

contents. The application of NAGAN for OCT showed that 

the noise style transfer is able to improve the segmentation 

and classification task, both in OCT and ultrasound images, 

respectively. Furthermore, in a previous study [23], a GAN 

was implemented with conditional adversarial networks, 

known as cGAN, to obtain a general-purpose solution. This 

model can be used to solve various image translation 

problems. 

In this study, the Pix2Pix GAN, as a component of a cGAN 

framework [23], was applied to the one-shot and full-range 

FD-OCT system to eliminate artifacts, including conjugate, 

DC, and auto-correlation artifacts, by using the image-to-

image translation mechanism. The Pix2Pix GAN was trained 

to learn how to translate a conventional FD-OCT depth 

profile generated from inverse fast Fourier transform (IFFT) 

signal processing into an artifact-free FD-OCT depth profile 

without the requirement of complicated equipment. The 

proposed Pix2Pix GAN–based FD-OCT system has a simple 

design and relatively low cost.  

The remainder of this paper is organized as follows. 

Section II describes the conventional FD-OCT architecture 

and artifact problems in the FD-OCT system along with 

image-to-image translation by using the Pix2Pix GAN. 

Section III presents the experimental results and a discussion 

of them. Finally, Section IV provides concluding remarks 

and suggestions for future studies. 

 
II. PIX2PIX GAN–BASED FULL-RANGE FD-OCT 

In this study, we propose a simplified FD-OCT scheme by 

using Pix2Pix GAN–based image-to-image translation to 

remove unwanted artifacts. 

A. Conventional full-range FD-OCT 

FD-OCT systems are based on the measurement of the 

interference spectrum, either in space on a spectrometer or in 

time during the wavelength sweep of a rapidly tunable laser 

source. Figure 1 depicts the architecture of the conventional 

full-range FD-OCT system implemented in this study to 

create the dataset. This system consists of a super 

luminescent diode (SLD), a 2 × 2 coupler, two collimators, a 

reference mirror, and an optical spectrum analyzer (OSA) 

that are used to obtain OCT spectra. The SLD, a broadband 

low-coherence light source, is distributed to the sample and 

reference arm through the coupler. In the sample arm, the 

beam is directly delivered to the sample, and then scattered 

and reflected into a collimator. In the reference arm, the 

probing beam is incident on a mirror. Let parameter n1 

represents the refractive index of the sample, d0 indicates the 

front surface of the sample toward the zero-delay position, 

and d1 denotes the physical thickness of the sample. Light 

emerging from the mirror passes back to the coupler in the 

reference arm. Beams from the reference and sample arms 

are recombined in the coupler and then passed to the OSA. 

Subsequently, the received spectra use the IFFT method for 

signal processing.  

The inverse Fourier transform of the intensity signal is 

given in [24]: 
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FIGURE 2. Pix2Pix GAN-based FD-OCT system. 

TABLE I 

DEVICES COMPARISON 

Devices Method 

Conventional Full-

Range FD-OCT 

Pix2Pix GAN-

Based FD-OCT 

Hardware Polarization Plate Standard Computer 

Beam Splitter GPU with 11 GB of 

DRAM Quarter-Wave Plate 

Mirror 

Collimator 

Software - Open-Source 

Python 

Open-Source 

TensorFlow 
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where k is the wavenumber, ID(k) is the photocurrent,  is the 

responsivity of the detector (A/W), S(k) is the power spectral, 

zR indicates the distance from the beam splitter or fiber 

coupler to the reference reflector, zs represents the path length 

variable in the sample arm measured from the beam splitter, 

and RR and RS denote the power reflectivity of the reference 

reflector and each reflector in the sample arm, respectively. 

From (1), the photocurrent can be divided into three 

components. The first term is called the DC component, and 

its amplitude is proportional to the power reflectivity of the 

reference mirror added to the sum of sample reflectivity. The 

DC component has the largest amplitude of the detector 

current and is an artifact in OCT. The second item is the 

desired component of OCT, which is the cross-correlational 

component of each sample reflector. The last component is 

an autocorrelation part, which is also an artifact in OCT, 

caused by the interference between different sample 

reflectors. In addition, a conjugate artifact, also called a 

mirror artifact, is another type of artifact found in OCT. This 

artifact occurs because the detected interferometric spectrum 

is real, whereas inverse Fourier transform of the spectral 

shows Hermitian symmetry. In other words, it’s positive and 

negative distances are the complex conjugates of each other. 

Therefore, if they are real, they must be identical [24].  

In OCT systems, the axial resolution is determined by the 

coherence length of the light source and defined using the 

Rayleigh criterion. The axial resolution of the OCT system 

can be expressed as follows: 
2

00.44
2

clz



 = =


                               (2) 

where lc is the coherence length of the light source, 0 is the 

central wavelength of the light source, and  is the 

bandwidth.  

The maximal depth position Zmax was determined according 

to the OSA wavelength resolution and is given as follows: 
2

0

max

1
.

4
Z




=                                 (3) 

where  is the OSA wavelength resolution. 

Assume that the central wavelength of the light source is 

1550 nm and the full width at half maximum of the spectrum 

is 20 nm. By using (2), the value of axial resolution can be 

calculated as approximately 52.86 μm. 

B. Pix2Pix GAN–based FD-OCT 

To eliminate these artifacts by using simple and cost-

effective methods, we propose applying the Pix2Pix GAN to 

the FD-OCT system to obtain an artifact-free FD-OCT depth 

profile, as shown in Figure 2. The Pix2Pix GAN is a general 

approach for image-to-image translation. It is a type of a 

conditional GAN, where the generation of the output image 

is conditional on the input image [25]. Compared with other 

GAN models, the conditional GAN has the capability of 

generating large high-quality images for a variety of image 

translation tasks. Therefore, the Pix2Pix GAN has been 

widely used to train a deep convolutional neural network and 

generates data that is similar to real data.   

Table I presents the devices required for the conventional 

FD-OCT method proposed in our previous work [5] and the 

proposed Pix2Pix GAN-based FD-OCT. The conventional 

FD-OCT method consist of two polarization plates, one 

beam splitter, one quarter-wave plate, two mirrors, and two 

collimators. Meanwhile, the proposed Pix2Pix GAN-based 

FD-OCT is computationally inexpensive and can be run on 

standard computers without the need of complex and 

expensive optical equipment, verified the cost-effective 

feature of the proposed system. The software used in the 

proposed system is the open-source framework. 
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                                                   (a)                                                                                                                          (b) 

                      
                                                                (c)                                                                                                                        (d) 

FIGURE 3. Sample of the FD-OCT dataset. (a) Conventional FD-OCT depth profile (b) 2D conventional FD-OCT image (c) Artifact-free FD-OCT depth 

profile (d) 2D artifact-free FD-OCT image. 

The dataset used for training the Pix2Pix GAN was 

generated by implementing conventional full-range FD-

OCT and contained many pairs of images. Each pair of 

images included an original image and its expected 

transformed result. In other words, we used the Pix2Pix 

GAN to translate a conventional FD-OCT depth profile into 

an artifact-free FD-OCT depth profile. First, the 

conventional FD-OCT depth profiles were generated using 

(1) with different parameters. Subsequently, the 

corresponding artifact-free FD-OCT depth profiles were 

obtained using the phase-shifting algorithm proposed in our 

previous study [4]. However, as shown in Figure 3 (a) and 

(c), these conventional and artifact-free FD-OCT depth 

profiles were all contained one-dimensional (1D) data, 

which could not be directly fed to the Pix2Pix GAN. To 

solve this problem, without the loss of generality, we 

expanded these 1D FD-OCT depth profiles into two-

dimensional (2D) images by duplicating original 1D data. 

Assume that the size of the conventional (or artifact-free) 

FD-OCT depth profile is 1 × N, where N denotes sampling 

points. Subsequently, raw data were copied and expanded 

to an N × N FD-OCT image (i.e., Figure 3 (b) and (d)). In 

addition, the brightness of lines inside the corresponding 

2D image was proportional to the intensity of the FD-OCT 

depth profile. 
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FIGURE 4. Pix2Pix GAN architecture. 

Figure 4 shows the Pix2Pix GAN architecture used in this 

study where n denotes the batch size and s is the stride. The 

discriminator was based on a PatchGAN model, which 

classified patches of an image as real or fake by outputting a 

matrix of values as the output instead of a single value. The 

advantage of using this model was that it provided sharp 

high-frequency details and the number of parameters could 

also be reduced. Source and target images (i.e., the 2D 

conventional and artifact-free FD-OCT images, respectively) 

were provided to the discriminator to determine whether the 

target was real or fake. 

The generator had a U-shaped network architecture, which 

added skipped connections between each central symmetric 

layer to prevent the loss of small information. The generator 

was used an encoder–decoder network composed of the 

standardized blocks of convolutional, batch normalization, 

dropout, and activation layers. The generator was trained 

through adversarial loss and updated through L1 loss that was 

measured between the generated image and the expected 

output image. This additional loss drove the generator model 

to create plausible translations of the source image. Overall, 

the generator was updated through a weighted sum of both 

adversarial and L1 losses. To achieve this simultaneous 

training, the logical or composite model was used to stack the 

generator on top of the discriminator. A source image was 

provided as the input to the generator and discriminator. In 

addition, the output of the generator was provided to the 

discriminator as the plausible image. The discriminator then 

predicted the likelihood of an image being real or fake, thus 

translating the source image. The objective of the proposed 

model is expressed as follows [19]: 

( ) ( ) ( )( )( ),, log , log 1 ,GAN x y xL G D E D x y E D x G x = + −    
      (4) 

where x is the source image, and y is the corresponding target 

image, set as the ground truth for x. In (4), the generator G 

attempted to minimize this objective in response to an 

adversarial discriminator D that attempted to maximize it, 

where the results are optimized as follows: 

( )* arg min max ,GAN
G D

G L G D=                      (5) 

where G* is the resulting optimized generator. 

The L1 loss from the generated and expected output images 

can be evaluated as follows: 

             
                      (a)                                                          (b)                                                           (c)                                                            (d) 

FIGURE 5. Image translation results for Pix2Pix GAN–based FD-OCT. 
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FIGURE 6. The 1D artifact-free FD-OCT depth profile after 100 epochs. 

( ) ( ), 1
1 x yL G E y G x = −

 
                       (6) 

The final objective of the proposed model can be denoted 

as follows: 

( ) ( )* arg min max , 1GAN
G D

G L G D L G= +                 (7) 

To train the discriminator, batches of real and fake images 

are required. The corresponding discriminator of the real 

image is given the label of class = 1 to indicate that they are 

real, whereas the corresponding discriminator of the fake 

image is given the label of class = 0 to indicate that they are 

fake. 

In this experiment, we used the 2D FD-OCT image dataset 

for both training and validation. The objective of image 

translation was to convert 2D conventional FD-OCT images 

into 2D artifact-free FD-OCT images. Both the training and 

validation datasets contained 1,000 images each. Both 2D 

conventional FD-OCT images and 2D artifact-free FD-OCT 

images were in JPEG format with an image being 600 pixels 

wide and 600 pixels high.  

The model was trained using the Keras DL framework on a 

personal workstation with an NVIDIA GeForce RTX 2080 

Ti graphics processing unit with 11 GB of memory. Each 

image was loaded and paired between a 2D conventional FD-

OCT image and a 2D artifact-free FD-OCT image. For 

computational purposes, the datasets were downscaled to 

images that were 256 pixels wide and 256 pixels high. The 

arrays of the datasets were saved in compressed NumPy 

array format. The discriminator model was optimized using 

the Adam optimizer with a learning rate of 0.0002 and a beta 

of 0.5 and by implementing the binary cross entropy loss 

function. The generator model applied different activation 

functions for the encoder and decoder network. Because 

small (negative) value will be induced in the down-sampling 

model, Leaky ReLU was used in the encoder network (down-

sampling) to prevent the “dead ReLU” problem. However, 

for the decoder network (up-sampling), RELU activation 

function still work well and have the advantages of faster 

performance and introduce more non-linearity [17], [26]. For 

the output layer, tanh activation function was implemented to 

normalized the output in the range of [-1,1] since the range of 

the brightness/value of each pixel of real image should be 

within [-1,1]. For weight initialization, a random normal with 

a standard deviation of 0.02 was applied [27]. 

GAN models typically do not converge; therefore, an 

equilibrium was found between the generator and 

discriminator models; that is, the image quality was used to 

choose the best model. To examine the quality of the 

translated image, the model was saved to an H5 formatted 

file every 10 training epochs and used later to generate 

image-to-image translations. The total number of epochs was 

set to 100. The results may have varied due to the stochastic 

nature of the algorithm in terms of differences in the 

numerical precision. 

 

 

III.  RESULTS AND DISCUSSION 

In this section, we present the experimental results of the 

proposed Pix2Pix-GAN based FD-OCT model. The model 

was trained with training dataset of 1,000 images. Test 

images were chosen randomly from the validation dataset 

with 1,000 images. The results were observed every 10 

epochs by using the saved model to generate translated 

images. Three experiments were conducted with the trained 

model.  

First experiment aims to prove the feasibility of the Pix2Pix 

GAN-based FD-OCT. Figure 5 displays the source, 

translated, and target images (i.e., the ground truth image) of 

FD-OCT, respectively. The indices of Sxx, Cj, DC, R1 and R2 

indicate the auto-correlation artifact, conjugate artifact, DC 

artifact, first and second peaks of FD-OCT, respectively. The 

source, translated, and target images denote the 2D 

conventional FD-OCT image, 2D artifact-free FD-OCT 

image produced using the Pix2Pix GAN, and real 2D 

artifact-free FD-OCT image, respectively. Our purpose was 

to translate 2D conventional FD-OCT images into 2D 

artifact-free FD-OCT images. From the translated images, we 

observed that the proposed model could translate the input 

FD-OCT image into the desired result. The FD-OCT depth 

profile of the translated image was the same as that of the 

target image. Figure 5 (b) reveals that some background 

noise was still present after 10 training epochs. However, 

after 100 training epochs, the translated image was clearer 

and approaching the target image, as shown in Figure 5 (c).  

To verify the optical distance of the FD-OCT image, we 

reduced the dimension of the translated image to obtain the 

corresponding 1D FD-OCT depth profile, as shown in Figure 

6. The first and second peaks of the FD-OCT depth profile 

(R1 and R2) obtained from the translated image matched those 

of the FD-OCT depth profile obtained from the target image 

(i.e., −1.0007 and 2.0155, respectively). Note that since the 

Pix2Pix-GAN generates image in RGB mode, the black color 
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(a) 

 
(b) 

 
FIGURE 7. Loss of GAN-based FD-OCT system. (a) Discriminator loss (b). 

Generator loss. 

TABLE III 

FD-OCT IMAGE PARAMETER 

                               Type 

     A、C                     B、D 

n1 

d0 

d1 

       1.5                          2.5 

    -500µm                  -500µm 

   2,000µm               1,200µm 

 

 
 

 

    
FIGURE 8.  The target image and translated results for 2D conventional FD-

OCT image of type A source image. 

  

   
FIGURE 9.  The target image and translated results for 2D conventional FD-

OCT image of type B source image. 

of the translated image is not truly black, cause an average 

bias about 60 in the intensity. Table II lists the optical 

distances of R1 and R2 for both translated and target images. 

The performance of the discriminator and generator models 

was recorded for each iteration. Figure 7 shows the 

discriminator loss for real images (blue), discriminator loss 

for generated fake images (orange), and the generator loss for 

generated fake images (green) for 100,000 iterations. 

Discriminator loss for real and fake samples is about the 

same at around 1.0 and loss for the generator is higher. This 

result indicates the stable GAN with normal loss during the 

training process.  

Further experiments are conducted without re-train the 

network and used the same weight obtained from previous 

training. The objective of image translation is to convert 2D 

conventional FD-OCT images into 2D artifact-free FD-OCT 

images. Four types of images are constructed by using the 

hyper-parameters in Table III and their specifications are 

described as follows:  

1. Type A: one of the 2D conventional FD-OCT images 

from the validation dataset. 

TABLE II 
OPTICAL DISTANCE OF FD-OCT 

                 Optical Distance (mm) 

        R1                          R2 

Translated Image 

Target Image 

    -1.0007                  2.0155 

    -1.0007                  2.0155 
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FIGURE 10.  The 1D translated and target artifacts-free FD-OCT depth profiles of type A image. 

               
FIGURE 11.  The 1D translated and target artifacts-free FD-OCT depth profiles of type B image. 

2. Type B: a 2D conventional FD-OCT image, which 

possess the same d0 with type A, whereas n1 and d1 are 

different.  

3. Type C: the hyper-parameters are the same as type A, but 

random Gaussian noise with SNR of 0 (or 3 dB) is added 

on the power spectra form OSA. 

4. Type D: the image is constructed by adding random 

Gaussian noise on the power spectra from OSA with 

SNR of 0 dB (or 3 dB) to type B image. 

Note that all these four types of images are not included in 

the training dataset. 

Second experiment applied the images of types A and B to 

verify the capability of the proposed Pix2Pix GAN-based 

FD-OCT model in reconstructing 2D artifact-free FD-OCT 

images of unknown 2D conventional FD-OCT images. Note 

that we also utilized the phase-shift algorithm (PSA) in [4] to 

reconstruct these test images for comparison. Since these 

images are not included in the training dataset, to avoid 

confusion, these images are names as PSA-based FD-OCT 

images in the rest of this study. 

Figures 8 and 9 show the target image and translated results 

for 2D conventional FD-OCT image of types A and B, 

respectively. It has been shown that the model could translate 

the source image into a 2D artifact-free FD-OCT image, 

which is the same as the PSA-based FD-OCT image. 

Moreover, to confirm the optical distance of the translated 

image, these 2D images are converted to the 1D FD-OCT 

depth profiles by reducing the dimension. Figures 10 and 11 

show the 1D translated and target artifacts-free FD-OCT 

depth profiles of types A and B, respectively.   

For type A, the first peak (R1) and second peak (R2) of the 

FD-OCT depth profile from the translated image matched 

those of the target image (−0.4933 and 2.5228), respectively. 

Meanwhile, for type B, the first peak (R1) and second peak 
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                                           (a)                                                                            (b)                                                                           (c)   
 

    
                                          (d)                                                                             (e)                                                                             (f)   
 

FIGURE 12.  The 1D FD-OCT depth profiles and 2D images of the type C source images of SNR 0 dB, PSA-based FD-OCT image, and Pix2Pix GAN-

based FD-OCT image. 

TABLE IV 

FD-OCT OPTICAL DISTANCE COMPARISON 

                 Optical Distance (mm) 

        R1                          R2 

Type A  

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.5228 

Type B 

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.4947 

 

 
 

 

(R2) of the FD-OCT depth profile from the translated image 

matched those of the target image, (−0.4933 and 2.4947), 

respectively. The second peak represented a small error but 

was in the acceptable range. The optical distance of R1 and R2 

both for translated and target images are shown in Table IV. 

In order to prove that the proposed Pix2Pix GAN-based 

FD-OCT can eliminate the artifacts of FD-OCT image with 

more complex noisy, the third experiment used the images 

from the validation images of types C and D. 

 Figure 12 presents the 1D FD-OCT depth profiles and 2D 

images of the type C source image of SNR 0 dB, PSA-based 

FD-OCT image and Pix2Pix GAN-based FD-OCT image, 

respectively. As shown in Figure 12 (a) and (d), it can be 

observed that there are a lot of noises in the source image, 

except the artifacts. Figure 12 (b) and (e) depict the results of 

PSA-based FD-OCT, where noises still exist expect for the 

peaks of FD-OCT. Further, Figure 12 (c) and (f) show the 

translated image using the Pix2Pix GAN-based FD-OCT 

method. It has been shown that the artifacts and noises are 

almost eliminated, and only an acceptable small noise-floor 

remains in the image. Figure 13 depicts the 1D FD-OCT 

depth profiles and 2D images of the type C source image of 

SNR 3 dB, PSA-based FD-OCT image and Pix2Pix GAN-

based FD-OCT image, respectively. From Figure 13 (a) and 

(d), we can observe that much noises appear in the source 

image. Figure 13 (b) and (e) display the results of PSA-based 

FD-OCT, which still have noises in addition to the FD-OCT 

peaks. Figure 13 (c) and (f) present the translated image 

using the Pix2Pix GAN-based FD-OCT method, where 

artifacts are removed and only a low acceptable noise-floor 

remains. These results verify that the proposed Pix2Pix 

GAN-based FD-OCT can effectively remove the artifacts 

and other noises in the resulted artifacts-free FD-OCT image. 

Compare to the PSA in [4], the proposed Pix2Pix GAN-

based FD-OCT achieves superior results.  
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(a) (b) (c) 

   
(d) (e) (f) 

FIGURE 13.  The 1D FD-OCT depth profiles and 2D images of the type C source images of SNR 3 dB, PSA-based FD-OCT image, and Pix2Pix 

GAN-based FD-OCT image. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

FIGURE 14.  The 1D FD-OCT depth profiles and 2D images of the type D source images of SNR 0 dB, PSA-based FD-OCT image, and Pix2Pix 

GAN-based FD-OCT image. 
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                                          (a)                                                                             (b)                                                                          (c)   

      
                                          (d)                                                                             (e)                                                                          (f)   
 

FIGURE 15.  The 1D FD-OCT depth profiles and 2D images of the type D source images of SNR 3 dB, PSA-based FD-OCT image, and Pix2Pix GAN-

based FD-OCT image. 

 

TABLE V 
FD-OCT OPTICAL DISTANCE COMPARISON 

                 Optical Distance (mm) 

        R1                          R2 

Type C 0 dB SNR 

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.5228 

Type C 3 dB SNR 

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.5228 

 

 
 

 

TABLE VI 

FD-OCT OPTICAL DISTANCE COMPARISON 

                 Optical Distance (mm) 

        R1                          R2 

Type D 0 dB SNR 

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.5228 

Type D 3 dB SNR 

Translated Image 

Target Image 

     

    -0.4933                   2.5228 

    -0.4933                   2.5228 

 

 
 

 

Table V presents the optical distance of R1 and R2 for type C 

source image of SNR 0 dB (or 3 dB) reconstructing by using 

PSA-based FD-OCT and Pix2Pix GAN-based FD-OCT 

method, respectively. It can be observed that the first peak 

(R1) and second peak (R2) of the FD-OCT depth profile 

reconstructed by the Pix2Pix GAN-based FD-OCT are the 

same as that of PSA-based FD-OCT. 

Figures 14 and 15 depict the 1D FD-OCT depth profiles 

and 2D images of the type D source images of SNR 0 dB and 

3 dB, PSA-based FD-OCT image and Pix2Pix GAN-based 

FD-OCT image, respectively. It has been shown that a lot of 

noises are accompanied with the source image. The PSA-

based FD-OCT can remove the artifacts, but still much 

noises exist except for the FD-OCT peaks. In addition, the 

proposed Pix2Pix GAN-based FD-OCT can eliminate the 

artifacts and effectively reduce the noise power. Similarly, 

the optical distance of R1 and R2 for type D source image of 

SNR 0 dB and 3 dB are respectively reconstructed by using 

PSA-based FD-OCT and Pix2Pix GAN-based FD-OCT 

method, as shown in Table VI. The values of R1 and R2 of the 

FD-OCT depth profile reconstructed from the Pix2Pix GAN-

based FD-OCT and the PSA-based FD-OCT are the same.  

Table VI shows the optical distance of R1 and R2 from type 

D both for translated image from Pix2Pix GAN and target 

images. For with 0 dB SNR, the first peak (R1) and second 

peak (R2) of the FD-OCT depth profile from the translated 

image matched those of the target image (−0.4933 and 
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2.5228), respectively. Furthermore, for type D with 0 dB 

SNR, the first peak (R1) and second peak (R2) of the FD-OCT 

depth profile from the translated image matched those of the 

target image, (−0.4933 and 2.5228), respectively.  

 
IV.  CONCLUSION 

In this study, one Pix2Pix GAN-based FD-OCT is proposed 

to eliminate the artifacts of FD-OCT images, including 

conjugate, DC, and auto-correlation artifact. Four types of 

2D conventional FD-OCT images (i.e., types A to D) are 

constructed to verify the reconstructing capability of model. 

The first two experiment results show that the proposed 

Pix2Pix GAN-based FD-OCT can reconstruct the 1D FD-

OCT depth profile and 2D artifact-free FD-OCT images as 

well as the phase-shift algorithm-based FD-OCT system. 

Further, at the last experiment, additional Gaussian noise of 

SNR 0 dB and 3 dB are respectively added to the power 

spectral to generate noisier 2D conventional FD-OCT images 

(i.e., types C and D) for testing the model. From the results, it 

can be observed that the proposed model can effectively 

remove the artifacts and other noises in the resulted artifacts-

free FD-OCT image. In addition, the proposed Pix2Pix 

GAN–based FD-OCT has advantages of simple design and 

relatively low cost. Our future work will focus on how to 

apply this model to more complex FD-OCT depth profile 

structure.  
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